Name: _____

Honors Chemistry: \Box yellow $\ \Box$ blue $\ \Box$ red

pH, pOH, $K_a\ \&\ \mathrm{pK}_a\ worksheet$

Calculate the pH of each of the following aqueous solutions and tell whether the solution is acidic, basic or neutral.

1.
$$[H^+] = 4.59 \times 10^{-7} M$$

2. $[OH^-] = 7.42 \times 10^{-5} M$

Calculate the pOH of each of the following aqueous solutions:

3. $[OH^{-}] = 4.59 \times 10^{-13} M$ 4. $[H^{+}] = 4.29 \times 10^{-11} M$

Calculate [H⁺] in each of the following aqueous solutions:

5.
$$pH = 13.1$$
 6. $pOH = 4.95$

Calculate [OH⁻] in each of the following aqueous solutions:

7.
$$pOH = 9.39$$
 8. $pH = 2.54$

- 9. An 0.100 M solution of nitrous acid (HNO₂) has a pH of 2.17.
 - (a) What is $[H^+]$ for this solution?
 - (b) What is $[NO_2^-]$ for this solution?
 - (c) What is $[HNO_2]$ for this solution? (Hint: it is close to, but not exactly 0.1 M, . The concentration of 0.1 M does not account for dissociation.)
 - (d) What is the value of K_a for HNO₂?

(e) What is the pK_a of HNO₂?