Name:			
		D1 1	
		Block:	

Equilibrium Problems

Write the expression for the equilibrium constants for each of the following reactions.

1.
$$Xe + 3F_2 \leftrightharpoons XeF_6$$

2.
$$CH_4 + 2H_2S \Leftrightarrow CS_2 + 4H_2$$

$$3. \ 3\operatorname{CO}_2 + 4\operatorname{H}_2\operatorname{O} \leftrightharpoons \operatorname{C}_3\operatorname{H}_8 + 5\operatorname{O}_2$$

4. Write the chemical equation for the equilibrium system given by the expression

$$K_{eq} = \frac{[{\rm H_2O}]^2 \, [{\rm O_2}]}{[{\rm H_2O_2}]^2}$$

5. Write the chemical equation for the equilibrium system given by the expression:

$$K_{eq} = \frac{[\text{NH}_3]^2}{[\text{N}_2] [\text{H}_2]^3}$$

6. Write the chemical equation for the equilibrium system given by the expression:

$$K_{eq} = \frac{[\text{HCl}]^4 [\text{O}_2]}{[\text{H}_2\text{O}]^2 [\text{Cl}_2]^2}$$

7. A reaction vessel contains $0.150\,M$ CH₄, $0.233\,M$ H₂O, $0.259\,M$ H₂, and $0.513\,M$ CO. If the equilibrium reaction is $CH_4 + H_2O \rightleftharpoons CO + 3H_2$, calculate the equilibrium constant K_{eq} . 8. A 10ℓ flask contains 0.128 mol of CO, 0.155 mol of H₂ and 0.0244 mol of CH₃OH. If the equilibrium reaction is $CH_3OH = CO + 2H_2$, calculate the equilibrium constant K_{eq} . 9. For the reaction $2 \text{ NOBr} \leftrightharpoons 2 \text{ NO} + \text{Br}_2$, the value of the equilibrium constant K_{eq} is 0.0125. If the concentration of NO is 0.750 M and the concentration of Br₂ is 0.200 M, what is the concentration of NOBr?