Name: _____

Block: _____

Stoichiometry #2: Mass-Mass Problems

- 1. Given the following equation: $2 \mathrm{K} + \mathrm{Cl}_2 \longrightarrow 2 \mathrm{KCl}$
 - (a) How many grams of KCl would be produced from $2.50 \,\mathrm{g}$ of K and excess Cl_2 ?
 - (b) How many grams of KCl would be produced from 1.00 g of Cl_2 and excess K?
- 2. Given the following equation: $Na_2O + H_2O \longrightarrow 2 NaOH$
 - (a) If 124 g of Na₂O is reacted with excess H₂O, how much NaOH will be made?
 - (b) How many grams of Na₂O would be required to produce 80 g of NaOH?

- 3. Given the following equation: $2 \operatorname{NaClO}_3 \longrightarrow 2 \operatorname{NaCl} + 3 \operatorname{O}_2$
 - (a) 12.00 mol of NaClO₃ will produce how many grams of O_2 ?
 - (b) How many grams of NaCl are produced when $80.0 \,\mathrm{g}$ of O_2 are produced?

- 4. Given the following equation: $2 \text{ Mg} + \text{O}_2 \longrightarrow 2 \text{ MgO} + 1203.2 \text{ kJ}$
 - (a) What mass of magnesium is needed to completely react with 48.0 g of oxygen?
 - (b) How many grams of MgO are produced?
 - (c) How much energy is produced?

- 5. Given the following equation: $4 \operatorname{Al} + 3 \operatorname{O}_2 \longrightarrow 2 \operatorname{Al}_2 \operatorname{O}_3 + 3351.4 \operatorname{kJ}$
 - (a) How many moles of Al are needed to react with $3.50 \text{ mol of } O_2$?

(b) If 382 g of Al_2O_3 were produced, how many grams of Al reacted?

(c) If the reaction consumed 2 mol of Al, how much energy was produced?