Unit: Study Skills

NGSS Standards/MA Curriculum Frameworks (2016): SP5

AP[®] Physics 1 Learning Objectives/Essential Knowledge (2024): SP2.A, SP2.B, SP2.C, SP2.D

Mastery Objective(s): (Students will be able to ...)

• Take notes on math problems that both show and explain the steps.

Success Criteria:

- Notes show the order of the steps, from start to finish.
- A reason or explanation is indicated for each step.

Language Objectives:

• Be able to describe and explain the process of taking notes on math problems.

Tier 2 Vocabulary: N/A

Notes:

If you were to copy down a math problem and look at it a few days or weeks later, chances are you'll recognize the problem, but you won't remember how you solved it.

Solving a math problem is a process. For notes to be useful, *your notes need to capture the process as it happens, not just the final result*.

If you want to take good notes on how to solve a problem, you need your notes to show what you did at each step.

Use this space for summary and/or additional notes:

Taking Notes on Math Problems

	Taking Notes on Wath Problems Page: 21
Big Ideas	Details Unit: Study Skills
	For example, consider the following physics problem:
	A 25 kg cart is accelerated from rest to a velocity of $3.5 \frac{m}{s}$ over an
	interval of 1.5 s. Find the net force applied to the cart.
	The solved problem looks like this:
	$\frac{m}{A \frac{25 \text{ kg}}{25 \text{ kg}}} \text{ cart is accelerated } \frac{from \text{ rest}}{from \text{ rest}} \text{ to a velocity of } 3.5 \frac{m}{s} \text{ over an}$
	interval of <u>1.5 s</u> . Find the <u>net force</u> applied to the cart.
	t $F_{net} = ma$ $v - v_o = at$ $F_{net} = 25a$ $3.5 - 0 = (a)(1.5)$ $F_{net} = (25)(5.5)$ $3.5 = 1.5a$
	$F_{net} = ma$ $v - v_o = at$
	$F_{net} = 25a$ $3.5 - 0 = (a)(1.5)$
	$F_{net} = (25)(5.5)$ $3.5 = 1.5a$
	$F_{net} = 138.\overline{8} \text{ N}$ $a = 5.5 \frac{\text{m}}{\text{s}^2}$
	This looks nice, and it's the right answer. But if you look at it now (or look back at it in a month), you won't know what you did.
	The quickest and easiest way to fix this is to number the steps and add a couple of words of description for each step:
1	$\frac{m}{A \frac{25 \text{ kg}}{25 \text{ kg}} \text{ cart is accelerated } \frac{from \text{ rest}}{from \text{ rest}} \text{ to a velocity of } \frac{3.5 \frac{m}{s}}{s} \text{ over}$ Label quantities $\frac{t}{(\text{Given } \& \text{Unknown})} \text{ an interval of } \frac{1.5 \text{ s}}{1.5 \text{ s}}.$ Find the <u>net force</u> applied to the cart.
2	Find Equation that has desired quantity $F_{net} = ma$ $F_{net} = 25a$ 3 Need another equation to find a $v - v_o = at$
	$3.5-0 = (a)(1.5)$ $5 \underbrace{\text{Substitute } a \text{ into}}_{1^{\text{st}} \text{ equation}} a = 5.5 \frac{\text{m}}{\text{s}^2} \qquad (4) \underbrace{\text{Solve for } a}_{F_{net}} = (25)(5.5)$ $F_{net} = 138.\overline{8} \text{ N} (6) \text{ Remember the unit!}$
	The math is exactly the same as above, but notice that the annotated problem includes two features:
	• Steps are numbered, so you can see what order the steps were in.
	 Each step has a short description, so you know exactly what was done and why.
	Annotating problems this way allows you to <i>study the process</i> , not just the answer!
	Lice this space for summany and/or additional notes:

Use this space for summary and/or additional notes: