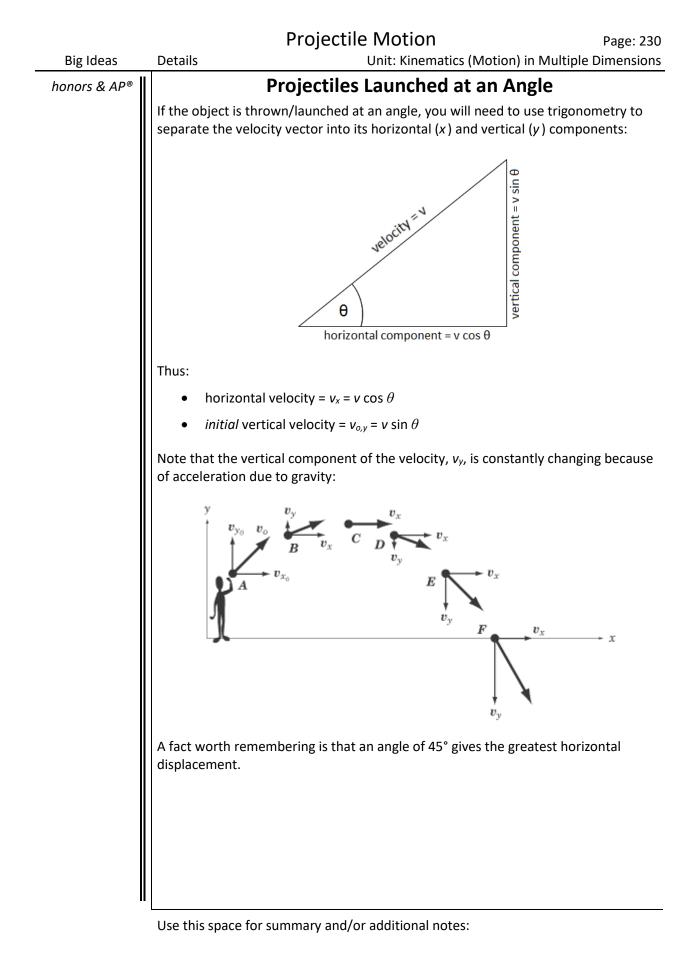
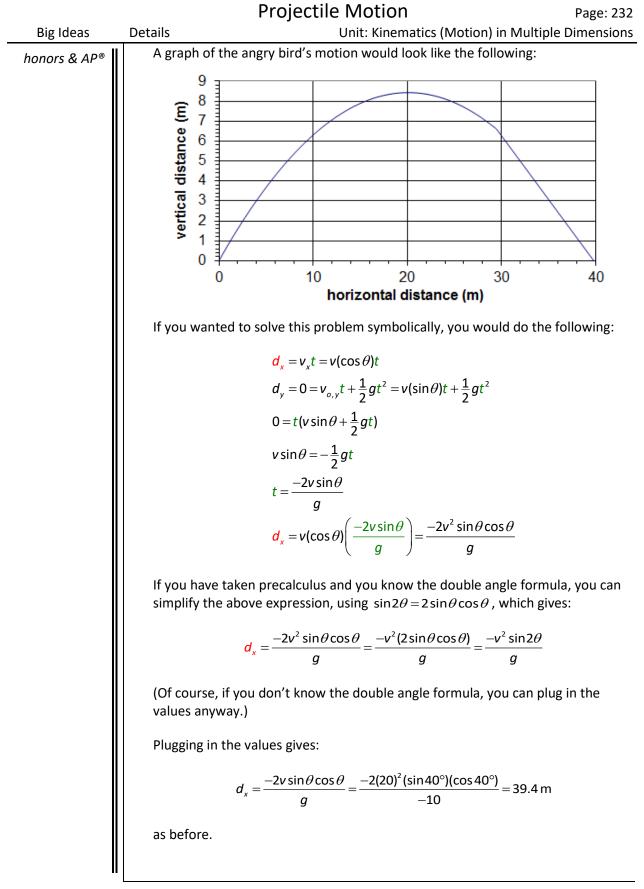
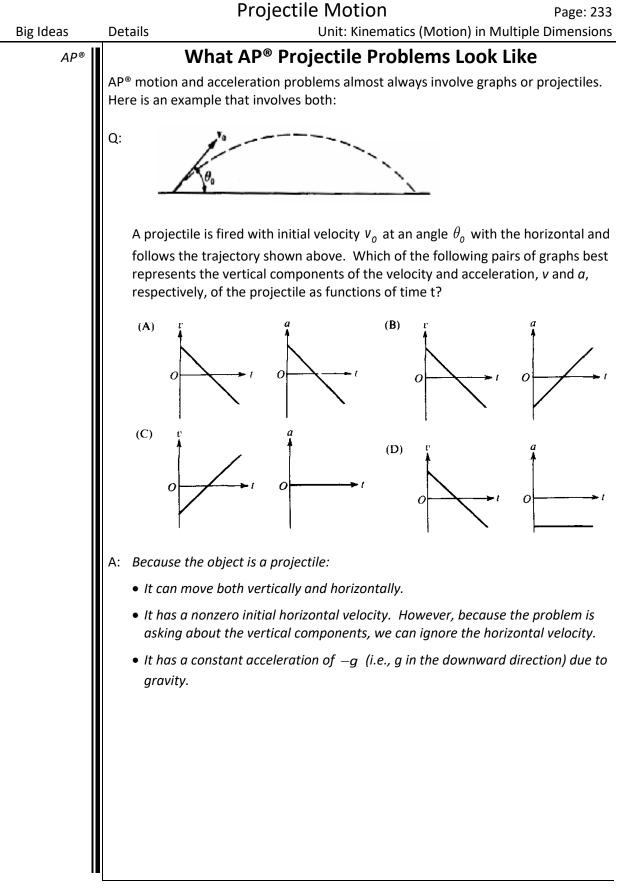
Big Ideas	Projectile MotionPage: 226DetailsUnit: Kinematics (Motion) in Multiple Dimensions
	Projectile Motion
	 Unit: Kinematics (Motion) in Multiple Dimensions NGSS Standards/MA Curriculum Frameworks (2016): N/A AP® Physics 1 Learning Objectives/Essential Knowledge (2024): 1.5.A, 1.5.A.1, 1.5.A.2, 1.5.A.3 Mastery Objective(s): (Students will be able to) Solve problems that involve motion in two dimensions. Success Criteria: Correct quantities are chosen in each dimension (x & y). Positive direction is chosen for each dimension and vector quantities in each dimension have the appropriate sign (+ or -). Time (scalar) is correct, positive, and the same in both dimensions. Algebra is correct and rounding to appropriate number of significant figures is reasonable. Language Objectives: Correctly identify quantities with respect to type of quantity and direction in word problems. Assign variables correctly in word problems.
	Tier 2 Vocabulary: projectile, dimension
	 Labs, Activities & Demonstrations: Play "catch." Drop one ball and punch the other at the same time. "Shoot the monkey." Notes: projectile: an object that is propelled (thrown, shot, etc.) horizontally and also falls due to gravity. Because perpendicular vectors do not affect each other, the vertical and horizontal mation of the projectile are independent and can be considered constately using a second second
	motion of the projectile are independent and can be considered separately, using a separate set of equations for each.


2 : 11		Projectile Motion	Page: 227
Big Ideas	Details Assuming we can ne	Unit: Kinematics (Motion) in Mu glect friction and air resistance (which is usual	
	year physics probler	ns), we make the following important assumpt	ions:
	Horizontal Motic	on	
		on of a projectile is not affected by anything ex istance is negligible, we can assume that there	•
	acceleration, and th	erefore the horizontal velocity of the projectile zontal motion of a projectile can be described b	\vec{v}_x , is constant.
		$\vec{d}_x = \vec{v}_x t$	
		ays moving in the same horizontal direction, so or "x") direction for the vector quantities of ve	
	Vertical Motion		
	is also moving horizo	ectiles the same way regardless of whether or rontally. All projectiles therefore have a constant $10 \frac{m}{s^2}$ (in the vertical or "y" direction), due to gr	nt downward
	Therefore, the vertion	cal motion of the particle can be described by t	he equations:
		$\vec{\bm{v}}_{y} - \vec{\bm{v}}_{o,y} = \vec{\bm{g}}t$	
		$\vec{\boldsymbol{d}}_{y} = \vec{\boldsymbol{v}}_{o,y}t + \frac{1}{2}gt^{2}$	
		$\vec{v}_y^2 - \vec{v}_{o,y}^2 = 2\vec{g}\vec{d}$	
		e two subscripts for initial velocity, because it in the vertical velocity v_y .)	s both the initial
	falls), we make dow	ways moving downwards (<i>i.e.,</i> it is launched ho on the positive vertical direction and all vector of ent and acceleration) in the y-direction are pos	quantities
	velocity and displace this case, we need to	unched upwards, reaches a maximum height, a ement are sometimes upwards and sometimes o choose a direction to be positive. Usually, up ction, which makes $\vec{v}_{o,y}$ positive, and makes \vec{v}_{y} $\vec{v} = -10 \frac{m}{s^2}$.)	downwards. In ward is chosen to

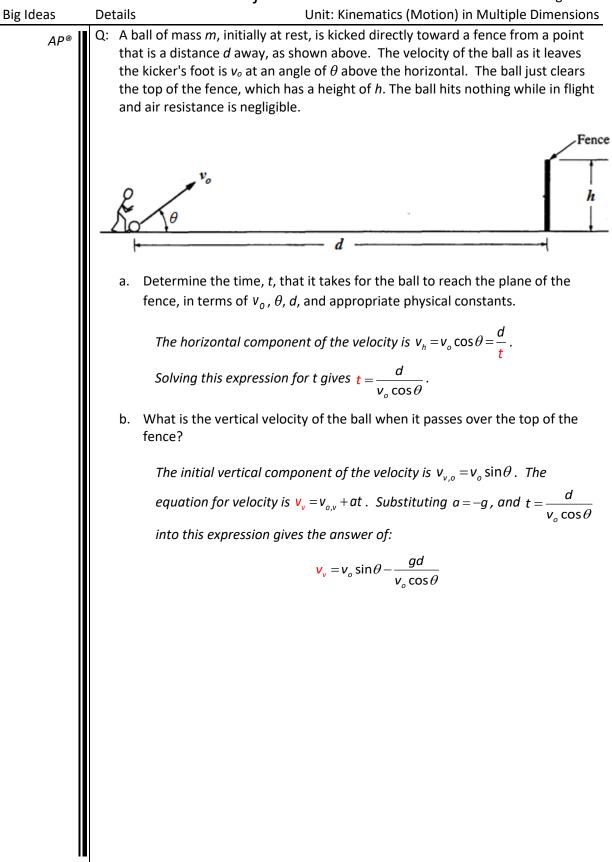
Use this space for summary and/or additional notes:

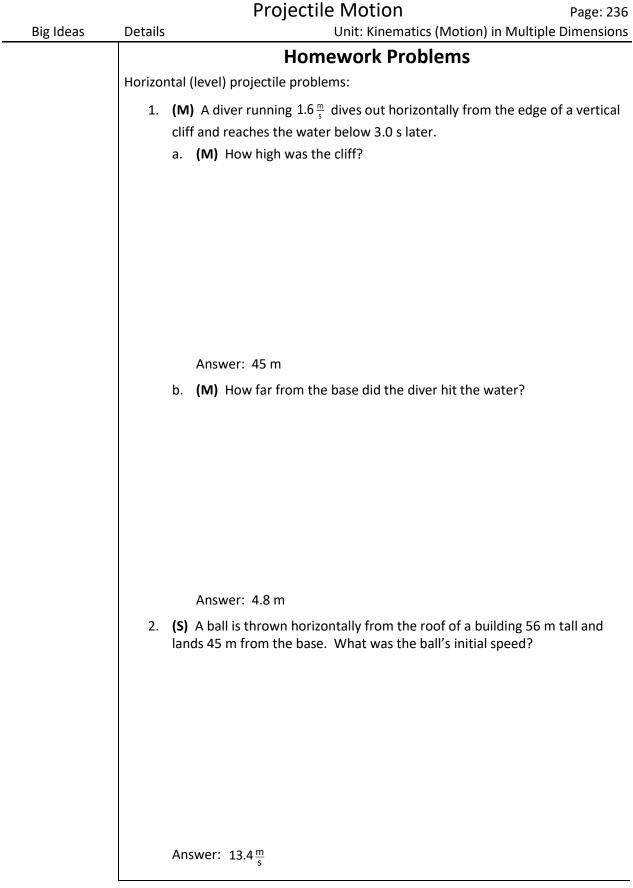

		Projectile Motion	Page: 22
Big Ideas	Details	Unit: Kinematics (Motion) in M	Iultiple Dimension
	Time		
	projectile spends	projectile spends falling must be the same as th moving horizontally. This means time (t) is the means time is the variable that links the vertical m.	same in both
	The consequences	s of these assumptions are:	
		that the object takes to fall is determined by its al direction. (When it hits the ground, it stops n s.)	
		ontal distance that the object travels is determine vertical equation) and by its velocity in the hori	-
	Therefore, the ge	neral strategy for most projectile problems is:	
	1. Solve th	ne vertical problem first, to get the time.	
	2. Use the	time from the vertical problem to solve the hor	izontal problem.
	Use this space for	summary and/or additional notes:	

Big Ideas	Projectile MotionPage: 229DetailsUnit: Kinematics (Motion) in Multiple Dimensions
	Sample problem:
	 Q: A ball is thrown horizontally at a velocity of 5^m/_s from a height of 1.5 m. How far does the ball travel (horizontally)?
	A: We're looking for the horizontal distance, d_x . We know the vertical distance, $d_y = 1.5 \text{ m}$, and we know that $v_{o,y} = 0$ (there is no initial vertical velocity because the ball is thrown horizontally), and we know that $a_y = g = 10 \frac{\text{m}}{\text{s}^2}$. We need to separate the problem into the horizontal and vertical components.
	Horizontal: Vertical:
	$d_x = v_x t \qquad \qquad d_y = v_{o,y} t + \frac{1}{2} g t^2$
	$d_{x} = 5t$ $d_{y} = \frac{1}{2}gt^{2}$
	At this point we can't get any farther, so we need to turn to the vertical problem. $\begin{aligned} & \frac{2d_y}{g} = t^2 \\ & t = \sqrt{\frac{2d_y}{g}} \\ & t = \sqrt{\frac{(2)(1.5)}{10}} = \sqrt{0.3} = 0.55 \text{ s} \end{aligned}$
	$1 - \sqrt{-10} - \sqrt{0.3 - 0.55}$
	Now that we know the time, we can substitute it back into the horizontal equation, giving: $d_x = (5)(0.55) = 2.74 \text{ m}$
	A graph of the vertical <i>vs.</i> horizontal motion of the ball looks like this:
	1.5
	L distance (m)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	horizontal distance (m)
	Use this space for summary and/or additional notes:


Use this space for summary and/or additional notes:

2 . 11	•	ctile Motion	Page: 231
Big Ideas	Details	Unit: Kinematics (Motion) in Multip	le Dimensions
honors & AP®		d upward from a slingshot at an angle of a distrikes the pigs' fortress at the same he	
	was launched from. How	far away is the fortress?	
	A: We are looking for the ho	prizontal distance, <mark>d</mark> _x .	
	We start with the equation		
		$d_x = v_x t$	
	We need v_h and t .		
	We can substitute for v_x (using $v_x = v \cos \theta$ to get:	
	d _x	$=$ ($v \cos \theta$) $t = 20 \cos(40^\circ) t = 15.3 t$	
	We can get <i>t</i> from:		
	$d_{y} = v_{o, y}t + \frac{1}{2}gt^{2} = v_{v}$	$(\sin\theta)t + \frac{1}{2}gt^2 = 20(\sin 40^\circ)t + \frac{1}{2}(-10)t^2 = 1$	$2.9t - 5t^2$
	Because the vertical disp height as it started), $d_v =$	lacement is zero (the angry bird ends at th 0:	ne same
		$0 = 12.9t - 5t^2$	
		0 = t(12.9 - 5t)	
	which has the solutions:		
		t=0, 12.9-5t=0	
		s when the angry bird is launched. The sender the angry bird lands. Solving for t give	
		12.9 = 5t	
		$\frac{12.9}{5} = 2.57 \mathrm{s} = t$	
	We can now substitute th	nis expression into the first equation to ge	et:
		$d_x = 15.3 t = (15.3)(2.57) = 39.4 m$	
		n 2010 in which players used slingshots to shoot bin estroy a fortress and kill the bad guys, who were gr	


Use this space for summary and/or additional notes:



Use this space for summary and/or additional notes:

		Projectile Motion	Page: 234
Big Ideas	Details	Unit: Kinematics (Motion) in M	ultiple Dimensions
<u>A</u> P [®]	For each pair of acceleration. Be constant. if we convention), con positive, only (C The second grap constant, which is not zero, whic possible remain acceleration, be	Projectile Motion Unit: Kinematics (Motion) in M Graphs, the first graph is velocity vs. time. The ecause acceleration is constant, the graph has to choose up to be the positive direction (which is rect answers would be (A), (B), and (D). If we do yould be correct.	ultiple Dimensions e slope, $\frac{\Delta v}{\Delta t}$, is to have a the most common choose down to be eration is that acceleration as the only ant negative
I	l		

Projectile Motion

Use this space for summary and/or additional notes:

		Projectile Motion Page: 237
Big Ideas	Details	Unit: Kinematics (Motion) in Multiple Dimensions
honors & AP®	3.	(M – honors & AP[®]; A – CP1) A tiger leaps horizontally from a rock with height <i>h</i> at a speed of v_0 . What is the distance, <i>d</i> , from the base of the rock where the tiger lands?
		(If you are not sure how to do this problem, do #4 below and use the steps to guide your algebra.)
		Answer: $d = v_o \sqrt{\frac{2h}{g}}$
	4.	(S – honors & AP[®]; M – CP1) A tiger leaps horizontally from a 7.5 m high rock with a speed of $4.5 \frac{m}{s}$. How far from the base of the rock will he land?
		(You must start with the equations in your Physics Reference Tables and show all of the steps of GUESS. You may only use the answer to question #3 above as a starting point if you have already solved that problem.)
		Answer: 5.5 m
	5.	(M) The pilot of an airplane traveling $45\frac{m}{s}$ wants to drop supplies to flood victims isolated on a patch of land 160 m below. The supplies should be dropped when the plane is how far from the island?
		Answer: 255 m

Use this space for summary and/or additional notes:

		Projectile Motion	Page: 238
Big Ideas	Details	Unit: Kinematics (Motion) in Multiple	Dimensions
honors & AP®	Problems	s involving projectiles launched at an angle:	
nonois & AP	6. (M – honors & AP [®] ; A – CP1) A ball is shot out of a slingshot with of $10.0 \frac{m}{s}$ at an angle of 40.0° above the horizontal. How far away and?	-
	7. (F r	Answer: 9.85 m S – honors & AP[®]; A – CP1) The 12 Pounder Napoleon Model 18 primary cannon used during the American Civil War. If the canno nuzzle velocity of $439 \frac{m}{s}$ and was fired at a 5.00° angle, what was effective range of the cannon (the distance it could fire)? (Negleon resistance.)	n had a s the
I	A	Answer: 3347 m (Note that this is more than 2 miles!)	

Projectile Motion

Big Ideas	Details	Unit: Kinematics (Motion) in Multiple Dimensions
honors & AP®	8.	(M – AP [®] ; S – honors; A – CP1) A physics teacher is designing a ballistics
		event for a science competition. The ceiling is 3.00 m high, and the
		maximum velocity of the projectile will be $20.0 \frac{m}{s}$.
		a. What is the maximum that the vertical component of the projectile's
		initial velocity could have?
		Answer: 7.75 m/s
		b. At what angle should the projectile be launched in order to achieve this
		maximum height?
		Answer: 22.8°
		c. What is the maximum horizontal distance that the projectile could travel?
		Answer: 28.6 m