Angular Motion, Speed and Velocity Unit: Kinematics (Motion) in Multiple Dimensions NGSS Standards/MA Curriculum Frameworks (2016): N/A AP[®] Physics 1 Learning Objectives/Essential Knowledge (2024): 5.1.A, 5.1.A.1, 5.1.A.1.i, 5.1.A.1.i, 5.1.A.1.i, 5.1.A.2, 5.1.A.4 Mastery Objective(s): (Students will be able to...) • Solve problems that involve angular position and velocity. **Success Criteria:** • Correct quantities are chosen in each dimension ($r, \omega \& \theta$). • Positive direction is chosen for each dimension and vector quantities in each dimension have the appropriate sign (+ or -). • Time (scalar) is correct, positive, and the same in both dimensions. • Algebra is correct and rounding to appropriate number of significant figures is reasonable. Language Objectives: • Correctly identify quantities with respect to type of quantity and direction in word problems. • Assign variables correctly in word problems. Tier 2 Vocabulary: rotation, angular Labs, Activities & Demonstrations: • Swing an object on a string. Notes: If an object is rotating (traveling in a circle), then its position at any given time can be described using polar coördinates by its distance from the center of the circle (r)and its angle (θ) relative to some reference angle (which we will call $\theta = 0$). arc length (s): the length of an arc; the distance traveled around part of a circle. Δθ r

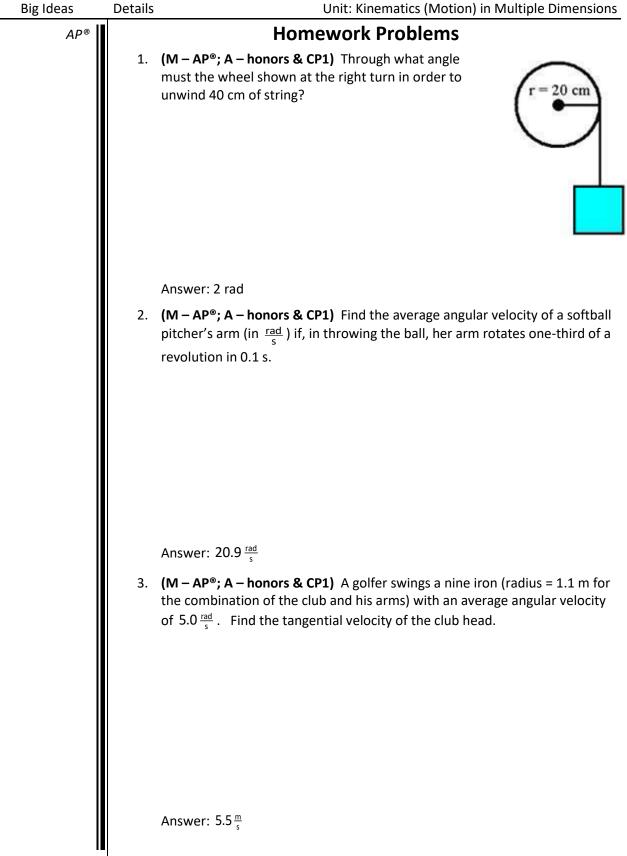
 $s = r\Delta\theta$

Use this space for summary and/or additional notes:

Details

Big Ideas

AP®


	Angular Motion, Speed and Velocity Page: 241
Big Ideas	Details Unit: Kinematics (Motion) in Multiple Dimensions
AP®	angular velocity (ω): the rotational velocity of an object as it travels around a circle, <i>i.e.,</i> its change in angle per unit of time. (For purposes of comparison, the definition of angular velocity is presented along with its linear counterpart.)
	$\vec{\mathbf{v}} = \frac{\vec{\mathbf{d}}}{t} = \frac{\Delta \vec{\mathbf{x}}}{\Delta t} = \frac{\vec{\mathbf{x}} - \vec{\mathbf{x}}_o}{t} \qquad \vec{\mathbf{\omega}} = \frac{\Delta \vec{\mathbf{\theta}}}{\Delta t} = \frac{\vec{\mathbf{\theta}} - \vec{\mathbf{\theta}}_o}{t}$
	linear angular
	In general, physicists use Greek letters for angular variables. The variable for angular velocity is the lower case Greek letter omega (ω). Be careful to distinguish in your writing between the Greek letter " ω " and the Roman letter " w ".
	tangential velocity: the linear velocity of a point on a rigid, rotating body. The term tangential velocity is used because the instantaneous direction of the velocity is tangential to the direction of rotation.
	To find the tangential velocity of a point on a rotating (rigid) body, the point travels an arc length of <i>s</i> in time <i>t</i> . If angle θ is in radians, then <i>s</i> = $r\Delta\theta$. This means:
	$\vec{v}_{T, ave.} = \frac{\Delta \vec{s}}{\Delta t} = \frac{r\Delta \vec{\theta}}{\Delta t} = r\vec{\omega}_{ave.}$ and therefore $\vec{v}_{\tau} = r\vec{\omega}$
	Sample Problems:
	Q: What is the angular velocity (^{rad} / _s) in of a car engine that is spinning at 2400 rpm?
	A: 2400 rpm means 2400 revolutions per minute.
	$\left(\frac{2400\text{rev}}{1\text{min}}\right)\left(\frac{1\text{min}}{60\text{s}}\right)\left(\frac{2\pi\text{rad}}{1\text{rev}}\right) = \frac{4800\pi}{60} = 80\pi\frac{\text{rad}}{\text{s}} = 251\frac{\text{rad}}{\text{s}}$

Use this space for summary and/or additional notes:

	De	Angular Motion, Speed and Velocity Page: 242
Big Ideas	1	tails Unit: Kinematics (Motion) in Multiple Dimensions
AP®	ų:	Find the total distance traveled in 10 s by a penny sitting on a spinning disc with a radius of 0.25 m that is rotating at a rate of 1 revolution per 2 s.
	A:	We are looking for the distance around the circle, which is the arc length. (This means we need to work in radians.)
		We know that:
		$\vec{s} = r \Delta \vec{\theta}$
		and we know:
		$\Delta \vec{oldsymbol{ heta}} = \vec{oldsymbol{\omega}} t$
		Substituting the second equation into the first gives:
		$\vec{s} = r \Delta \vec{\theta} = r \vec{\omega} t$
		We need to convert $\vec{\boldsymbol{\omega}}$ to $\frac{rad}{s}$:
		1 revolution per 2 s means $\vec{\boldsymbol{\omega}} = \left(\frac{1 r \boldsymbol{\wp} \cdot \boldsymbol{v}}{2 s}\right) \left(\frac{2 \pi r a d}{1 r \boldsymbol{\wp} \cdot \boldsymbol{v}}\right) = \frac{2 \pi}{2} = \pi \frac{r a d}{s}$
		Now we can substitute and solve:
		$\vec{s} = r\vec{\omega}t = (0.25)(\pi)(10) = 2.5\pi = (2.5)(3.14) = 7.85 \mathrm{m}$
		Extension
	Jus	t as jerk is the rate of change of linear acceleration, angular jerk is the rate of
	cha	ange of angular acceleration. $\vec{\zeta} = \frac{\Delta \vec{\alpha}}{\Delta t}$. (ζ is the Greek letter "zeta". Many college
	pro	ofessors cannot draw it correctly and just call it "squiggle".) Angular jerk has not en seen on AP [®] Physics exams.
1		

Use this space for summary and/or additional notes:

Angular Motion, Speed and Velocity Page: 243 ils Unit: Kinematics (Motion) in Multiple Dimensions

Use this space for summary and/or additional notes: