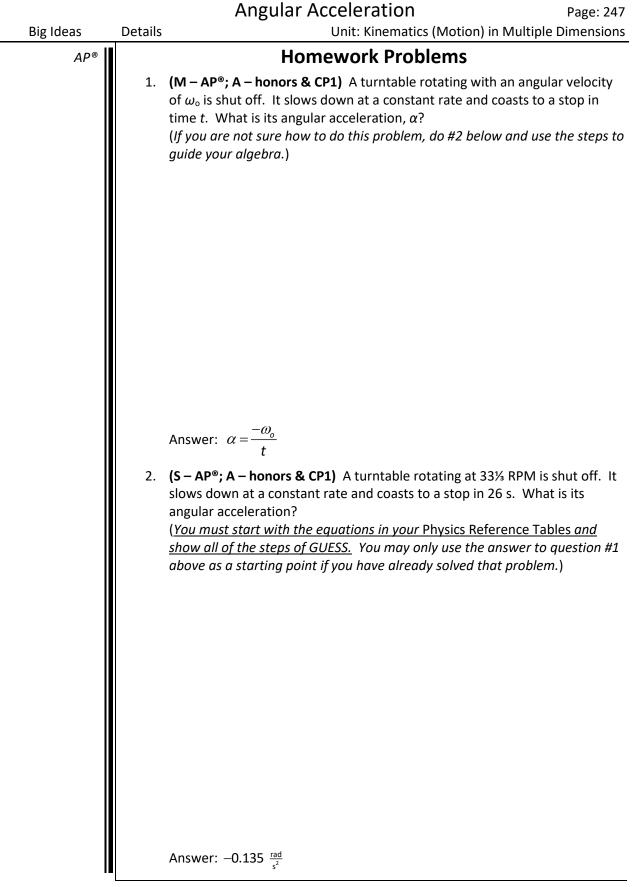
Unit: Kinematics (Motion) in Multiple Dimensions **Big Ideas** Details AP® **Angular Acceleration** Unit: Kinematics (Motion) in Multiple Dimensions NGSS Standards/MA Curriculum Frameworks (2016): N/A AP[®] Physics 1 Learning Objectives/Essential Knowledge (2024): 5.1.A, 5.1.A.2, 5.1.A.3, 5.1.A.4, 5.1.A.4.i, 5.1.A.4.ii, 5.2.A, 5.2.A.2, 5.2.A.3 Mastery Objective(s): (Students will be able to ...) • Solve problems that involve angular acceleration. **Success Criteria:** • Correct quantities are chosen in each dimension (r, ω , ω_{o} , α and θ). • Positive direction is chosen for each dimension and vector quantities in each dimension have the appropriate sign (+ or -). • Time (scalar) is correct, positive, and the same in both dimensions. • Algebra is correct and rounding to appropriate number of significant figures is reasonable. Language Objectives: • Correctly identify quantities with respect to type of quantity and direction in word problems. • Assign variables correctly in word problems. Tier 2 Vocabulary: rotation, angular Labs, Activities & Demonstrations: • Swing an object on a string and then change its angular velocity.


Use this space for summary and/or additional notes:

		Angular Accelera	ation	Page: 245	
Big Ideas	Details	Unit: Ki	nematics (Motion) in Mult	iple Dimensions	
AP®	Notes:				
	If a rotating objec is changing.	slower, this means its rota	ational velocity		
	angular acceleration (α): the change in angular velocity with respect to time. (Again, the definition is presented with the linear equation for comparison.)				
		$\vec{a} = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v} - \vec{v}_o}{t}$	$\vec{\alpha} = \frac{\Delta \vec{\omega}}{\Delta t} = \frac{\vec{\omega} - \vec{\omega}_o}{t}$		
		linear	angular		
	As before, be careful to distinguish between the lower case Greek letter " α " and the lower case Roman letter " a ". As with linear acceleration, if the object has angular velocity and then accelerates, the position equation looks like this:				
	ز	$\vec{\boldsymbol{x}} - \vec{\boldsymbol{x}}_o = \vec{\boldsymbol{d}} = \vec{\boldsymbol{v}}_o t + \frac{1}{2}\vec{\boldsymbol{a}}t^2$	$\vec{\theta} - \vec{\theta}_o = \Delta \vec{\theta} = \vec{\omega}_o t + \frac{1}{2}\vec{\alpha}t^2$	2	
		linear	angular		
	<u>tangential acceleration</u> : the linear acceleration of a point on a rigid, rotating body. The term tangential acceleration is used because the instantaneous direction of the acceleration is tangential to the direction of rotation.				
	The tangential acceleration of a point on a rigid, rotating body is:				
	$\vec{a}_T = r\vec{\alpha}$				

Use this space for summary and/or additional notes:

	.	Angular Acceleration	Page: 246		
Big Ideas	Details Unit: Kinematics (Motion) in Multiple [
AP®	Sample Problem		acalaratas ta a		
	Q: A bicyclist is riding at an initial (linear) velocity of $7.5\frac{m}{s}$, and accelerates to a				
	velocity of $10.0\frac{m}{s}$ over a duration of 5.0 s. If the wheels on the bicycle have radius of 0.343 m, what is the angular acceleration of the bicycle wheels?				
			cle wheels!		
	 A: First we need to find the initial and final angular velocities of the bike wheel. We can do this from the tangential velocity, which equals the velocity of the bicycle. 				
		$\vec{v}_{o,T} = r\vec{\omega}_{o}$ $\vec{v}_{T} = r\vec{\omega}$			
		$\vec{\mathbf{v}}_{o,\tau} = r\vec{\boldsymbol{\omega}}_{o} \qquad \qquad \vec{\mathbf{v}}_{\tau} = r\vec{\boldsymbol{\omega}}$ $\frac{\vec{\mathbf{v}}_{o,\tau}}{r} = \vec{\boldsymbol{\omega}}_{o} \qquad \qquad \frac{\vec{\mathbf{v}}_{\tau}}{r} = \vec{\boldsymbol{\omega}}$			
		$\frac{7.5}{0.343} = \vec{\omega}_o = 21.87 \frac{rad}{s} \qquad \qquad \frac{10.0}{0.343} = \vec{\omega} = 29.00$.15 ^{rad} /s		
	Then we can	use the equation:			
		$\vec{\omega} - \vec{\omega}_o = \vec{\alpha} t$			
		$\frac{\vec{\boldsymbol{\omega}} - \vec{\boldsymbol{\omega}}_o}{t} = \vec{\boldsymbol{\alpha}}$			
		ť			
		$\frac{29.15 - 21.87}{5.0} = \vec{\alpha} = 1.46 \frac{rad}{s^2}$			
		5.0			
	An alternativ first:	e method is to solve the equation by finding the	linear acceleration		
		$\vec{\boldsymbol{v}} - \vec{\boldsymbol{v}}_o = \vec{\boldsymbol{o}}t$			
		$\frac{\vec{v}-\vec{v}_o}{\vec{v}_o}=\vec{a}$			
		<i>t</i> 100–75			
		$\frac{10.0-7.5}{5} = \vec{a} = 0.5 \frac{m}{s^2}$			
	Then we can acceleration:		ation and angular		
		$\vec{a}_{\tau} = r\vec{\alpha}$			
		$\frac{\vec{a}_{T}}{r} = \vec{\alpha}$			
		$\frac{0.5}{0.343} = \vec{\alpha} = 1.46 \frac{rad}{s^2}$			

Use this space for summary and/or additional notes:

Use this space for summary and/or additional notes: