	Drag	Page: 323			
Big Ideas	Details Unit: Fo	rces in One Dimension			
CP1 & honors (not AP®)	Drag				
(not AP*)	Unit: Forces in One Dimension				
	NGSS Standards/MA Curriculum Frameworks (2016): N/A				
	AP [®] Physics 1 Learning Objectives/Essential Knowledge (2024): N/A				
	Mastery Objective(s): (Students will be able to)				
	Calculate the drag force on an object.				
	Success Criteria:				
	Correct drag coëfficient is chosen.				
	Variables are correctly identified and substituted correct				
	Algebra is correct and rounding to appropriate number of reasonable.	of significant figures is			
	Language Objectives:				
	 Explain why aerodynamic drag depends on each of the v equation. 	anables in the			
	Tier 2 Vocabulary: drag				
	Labs, Activities & Demonstrations:				
	 Crumpled piece of paper or tissue vs. golf ball (drag force mass). 	e doesn't depend on			
	 Projectiles with same mass but different shapes. 				
	Notes:				
	Drag is the force exerted by particles of a fluid [*] resisting the m relative to a fluid. The drag force is essentially friction betwee particles of the fluid.	•			
		drag force			
	70 0 200				
	Most of the problems that involve drag fall into three categori	es:			
	1. The drag force is small enough that we ignore it.				
	 The drag force is equal to some other force that we ca calculate. 	n measure or			
	 The question asks only for a qualitative comparison of without drag. 	forces with and			
	* A fluid is any substance whose particles can separate easily, allowing it to f definite shape) and allowing objects to pass through it. Fluids can be liquin				

	Drag Page: 32					
Big Ideas	Details Unit: Forces in One Dimensio					
CP1 & honors (not AP®)	Calculating drag is complicated, because the effects of drag change dramatically at different flow rates.					
	The drag force can be estimated in simple situations, given the velocity, shape, and cross-sectional area of the object and the density of the fluid it is moving through.					
	For these situations, the drag force is given by the following equation:					
	$\vec{F}_{D} = -\frac{1}{2}\rho\vec{v}^{2}C_{D}A$					
	where:					
	\vec{F}_{D} = drag force					
	ρ = density of the fluid that the object is moving through					
	\vec{v} = velocity of the object (relative to the fluid)					
	C_{D} = drag coëfficient of the object (based on its shape)					
	A = cross-sectional area of the object in the direction of motion					
	This equation can be applied when:					
	 the object has a blunt form factor 					
	 the object's velocity relative to the properties of the fluid causes turbulence i the object's wake 					
	• the fluid is in laminar (not turbulent) flow before it interacts with the object					
	 the fluid has a relatively low viscosity[*] 					
	However, fluid flow is a lot more complicated than the above equation would suggest, and there are few situations in which the above equation gives a good result.					
	* Viscosity is a measure of how "gooey" a fluid is, meaning how much it resists flow and hinders the					
:	motion of objects through itself. Water has a low viscosity; honey and ketchup are more viscous.					
	Use this space for summary and/or additional notes:					

			чs			rage. JZ.
Big Ideas	Details			Unit: Force	s in One	Dimensior
CP1 & honors	The drag coëfficient, C_D , is a			Measured Drag Coefficients		
(not AP®)		nensionless number (meaning that		Shana		Drag
		its). The drag coëfficie		Shape	Со	efficient
	-	es all of the types of fr		Sphere		0.47
		vith drag, including fo n drag. It serves the s			\mathcal{I}	
	-	lrag problems that the			\square	0.42
		of friction (μ) serves in		Half-sphere ——>	V	0.42
	•	volving friction betwe	en			
	solid surface	25.		Cone 🗸		0.50
	Approvimat	e drag coëfficients for	-	-	v	
		es are given in the tak		Cube ——>		1.05
		suming that the fluid		-	~	
	-	ative to the object) in		Angled Cube	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	0.80
	direction of	the arrow.			\checkmark	
	The reason i	that raindrang have th	noir	Long Cylinder> ()		0.82
		that raindrops have th ic shape ("streamlined				,
		cause the drag force	u	Short		1.15
		ir shape until they ha	ve	Cylinder		1.15
	the shape w	ith the least amount of	of	Streamlined		0.04
	drag.			Body		0.04
	The reason t	that many cars have r	ooves	Streamlined		
		ownward from the fro		Half-body		0.09
		e back is to reduce th				
	drag force.					
	D (()					
	Drag coefficients of some vehicles and other objects:					
		Vehicle	CD	Object	CD	
		Toyota Camry	0.28	skydiver (vertical)	0.70	
		Ford Focus	0.32	skydiver (horizontal)	1.0	
		Honda Civic	0.36	parachute	1.75	
		Ferrari Testarossa	0.37	bicycle & rider	0.90	
		Dodge Ram truck	0.43		<u> </u>	
		Hummer H2	0.64			
				J		
:						

	Drag Page: 326					
Big Ideas	Details Unit: Forces in One Dimension					
CP1 & honors (not AP®)	To highlight some of the problems with the drag equation presented here, it is necessary to explain more about fluid flow.					
	Fluid flow is often characterized by a dimensionless number (<i>i.e.</i> , one that has no units because all of the units cancel) called the Reynolds number.					
	<u>Reynolds number</u> (<i>Re</i>): the ratio of inertial forces (remember that inertia = resistance to movement) to the viscous forces in a fluid. Reynolds number is given by:					
	$Re = \frac{\rho \vec{v} L}{\mu}$ where L is the "characteristic length" and μ is the viscosity (resistance to flow) of the fluid.					
	There are two basic types of fluid flow:					
	laminar flow turbulent flow					
	 <u>laminar flow</u>: occurs when the velocity of the fluid (or the object moving through it) is relatively low, and the particles of fluid generally move in a straight line in an organized fashion. Generally, flow is laminar if <i>Re</i> < 2300. 					
	 <u>Turbulent flow</u>: occurs when the velocity of the fluid (or the object moving through it) is high, and the particles move in a more jumbled, random manner. In general, turbulent flow causes higher drag forces. Generally, flow is turbulent if <i>Re</i> > 2900. 					
	The type of flow affects the drag coëfficient, C_{D} :					
	• In laminar flow, the drag coëfficient is roughly proportional to $\frac{1}{Re}$. Because					
	the Reynolds number is proportional to velocity, this means the drag coëfficient is roughly proportional to $\frac{1}{4}$. (This means that while the force is					
	proportional to \vec{v}^2 for a constant C_p , the actual drag force in laminar flow is proportional to \vec{v} .)					
	• In turbulent flow, the drag coëfficient depends greatly on the characteristics of the system. In many systems with turbulent flow, the drag coefficient is proportional to $\frac{1}{Re^7}$.					
	Note also that the viscosity of a Newtonian fluid drops steeply with temperature, which means the temperature also affects the Reynolds number, and therefore the drag coëfficient.					
	This is all to say that a reasonable quantitative treatment of fluid flow and drag is well beyond the scope of this course.					
	Use this space for summary and/or additional notes:					