	Drag Page:	
Big Ideas	Details Unit: Forces in One Dimen	sion
CP1 & honors (not AP®)	Drag Unit: Forces in One Dimension NGSS Standards/MA Curriculum Frameworks (2016): N/A AP® Physics 1 Learning Objectives/Essential Knowledge (2024): N/A Mastery Objective(s): (Students will be able to) • Calculate the drag force on an object. Success Criteria: • Correct drag coëfficient is chosen. • Variables are correctly identified and substituted correctly into the equation • Algebra is correct and rounding to appropriate number of significant figure reasonable. Language Objectives: • Explain why aerodynamic drag depends on each of the variables in the equation.	on.
	Tier 2 Vocabulary: drag	
	 Labs, Activities & Demonstrations: Crumpled piece of paper or tissue vs. golf ball (drag force doesn't depend of mass). Projectiles with same mass but different shapes. Notes: Drag is the force exerted by particles of a fluid[*] resisting the motion of an object relative to a fluid. The drag force is essentially friction between the object and particles of the fluid. Most of the problems that involve drag fall into three categories: The drag force is small enough that we ignore it. The drag force is equal to some other force that we can measure or calculate. The question asks only for a qualitative comparison of forces with and without drag.)n
	* A fluid is any substance whose particles can separate easily, allowing it to flow (does not have a definite shape) and allowing objects to pass through it. Fluids can be liquids or gases.	

Use this space for summary and/or additional notes:

	Drag	Page: 326
Big Ideas		es in One Dimension
CP1 & honors (not AP®)	Calculating drag is complicated, because the effects of drag chan different relative velocities.	ge dramatically at
	The drag force can be estimated in simple situations, given the vectors cross-sectional area of the object and the density of the fluid it is	• • •
	For these situations, the drag force is given by the following equa	ation:
	$\vec{F}_{D} = -\frac{1}{2}\rho\vec{v}^{2}C_{D}A$	
	where:	
	\vec{F}_{D} = drag force	
	ρ = density of the fluid that the object is moving through	
	\vec{v} = velocity of the object (relative to the fluid)	
	C_{D} = drag coëfficient of the object (based on its shape)	
	A = cross-sectional area of the object in the direction of mo	otion
	This equation can be applied when:	
	 the object has a blunt form factor 	
	 the object's velocity relative to the properties of the fluid of the object's wake 	auses turbulence in
	• the fluid is in laminar (not turbulent) flow before it interact	s with the object
	 the fluid has a relatively low viscosity[*] 	
	However, fluid flow is a lot more complicated than the above equations suggest, and there are few situations in which the above equation result.	
	* Viscosity is a measure of how "gooey" a fluid is, meaning how much it resists f motion of objects through itself. Water has a low viscosity; honey and ketchu	
	Lise this space for summary and/or additional notes:	

Use this space for summary and/or additional notes:

			ч ъ			1 ugc. 527
Big Ideas	Details			Unit: Force	s in One	e Dimension
CP1 & honors	The drag coëfficient, $\mathcal{C}_{_{\mathcal{D}}}$, is a			Measured Drag Coefficients		
(not AP®)		ess number (meaning that		Shape		Drag
		its). The drag coëfficions all of the types of fr		Shape	∼ Co	efficient
		vith drag, including fo		Sphere>		0.47
	drag and ski	n drag. It serves the s	same	``		
		lrag problems that the		Half-sphere ——>	()	0.42
		of friction (μ) serves ir volving friction betwe				
	solid surface	•	.cn	Cone 🔶 🔶	$\langle 0 \rangle$	0.50
				_		
		e drag coëfficients for es are given in the tak		Cube>		1.05
		suming that the fluid		•	~	
	•••	ative to the object) in	the	$\stackrel{\text{Angled}}{\text{Cube}} \longrightarrow \boldsymbol{\langle}$	$\langle \rangle$	0.80
	direction of	the arrow.		Long	<u> </u>	
	The reason	that raindrops have th	neir	Cylinder \longrightarrow ()		0.82
		ic shape ("streamlined	d	Short		
		cause the drag force ir shape until they hav		Cylinder		1.15
	-	ith the least amount of		Streamlined		
	drag.			$\xrightarrow{\text{Body}} \bigcirc $	>	0.04
	The reason t	that many cars have r	oofs	Streamlined		
		ownward from the fro		Half-body		0.09
	the car to th	e back is to reduce th				
	drag force.					
	Drag coeffic	ag coefficients of some vehicles and other objects:				
			-	,		
		Vehicle	CD	Object	CD	
		Toyota Camry	0.28	skydiver (vertical)	0.70	
		Ford Focus	0.32	skydiver (horizontal)	1.0	
		Honda Civic	0.36	parachute	1.75	
		Ferrari Testarossa	0.37	bicycle & rider	0.90	
		Dodge Ram truck	0.43			
		Hummer H2	0.64			
:						

Use this space for summary and/or additional notes:

	Drag	Page: 328		
Big Ideas		in One Dimension		
CP1 & honors (not AP®)	To highlight some of the problems with the drag equation present necessary to explain more about fluid flow.	ed here, it is		
	Fluid flow is often characterized by a dimensionless number (<i>i.e.,</i> one that has no units because all of the units cancel) called the Reynolds number.			
	Reynolds number (<i>Re</i>): the ratio of inertial forces (remember that resistance to movement) to the viscous forces in a fluid. Reyn given by:			
	$Re = \frac{\rho \vec{v}L}{\mu}$ where ρ is the density of the fluid, \vec{v} is the reisis the "characteristic length" and μ is the visco to flow) of the fluid.			
	There are two basic types of fluid flow:			
	laminar flow			
	laminar flow: occurs when the velocity of the fluid (or the object r is relatively low, and the particles of fluid generally move in a s organized fashion. Generally, flow is laminar if <i>Re</i> < 2300.			
	<u>Turbulent flow</u> : occurs when the velocity of the fluid (or the object it) is high, and the particles move in a more jumbled, random r general, turbulent flow causes higher drag forces. Generally, f <i>Re</i> > 2900.	manner. In		
	The type of flow affects the drag coëfficient, C_{p} :			
	 In laminar flow, the drag coëfficient is roughly proportional 	to $\frac{1}{2}$. Because		
	the Reynolds number is proportional to velocity, this means coëfficient is roughly proportional to $\frac{1}{y}$. (This means that v	s the drag		
	proportional to \vec{v}^2 for a constant C_p , the actual drag force proportional to \vec{v} .)	in laminar flow is		
	• In turbulent flow, the drag coëfficient depends greatly on the of the system. In many systems with turbulent flow, the drag proportional to $\frac{1}{Re^7}$.			
	Note also that the viscosity of a Newtonian fluid drops steeply with which means the temperature also affects the Reynolds number, a drag coëfficient.	•		
	This is all to say that a reasonable quantitative treatment of fluid f well beyond the scope of this course.	low and drag is		
	Use this space for summary and/or additional notes:			