Big Ideas	Details Unit: Forces in Multiple Dimensions
honors & AP®	Force Applied at an Angle
	Unit: Forces in Multiple Dimensions
	NGSS Standards/MA Curriculum Frameworks (2016): N/A
	AP [®] Physics 1 Learning Objectives/Essential Knowledge (2024): 3.A.2.1, 3.B.1.1, 3.B.1.2, 3.B.1.3
	Mastery Objective(s): (Students will be able to)
	 Calculate forces applied at different angles, using trigonometry.
	Success Criteria:
	 Forces are split or combined correctly using the Pythagorean Theorem and trigonometry.
	 Algebra is correct and rounding to appropriate number of significant figures is reasonable.
	Language Objectives:
	 Explain the concept of a component of a force.
	 Explain why it is incorrect to just add together the vertical and horizontal components of a force.
	Tier 2 Vocabulary: force
	Labs, Activities & Demonstrations:
	 Mass hanging from one or two scales. Change angle and observe changes in force.
	 Fan cart with fan at an angle.
	 For rope attached to heavy object, pull vs. anchor rope at both ends & push middle.
	Notes:
	An important property of vectors is that a vector has no effect on a second vector that is perpendicular to it. As we saw with projectiles, this means that the velocity of an object in the horizontal direction has no effect on the velocity of the same object in the vertical direction. This allowed us to solve for the horizontal and vertical velocities as separate problems.
	The same is true for forces. If forces are perpendicular to each other, they act independently, and the two can be separated into separate, independent mathematical problems:
	In the x-direction: $\vec{F}_{net,x} = m\vec{a}_x$
	In the y-direction: $\vec{F}_{net,y} = m\vec{a}_y$
	Note that the above is for linear situations. Two-dimensional rotational problems require calculus, and are therefore outside the scope of this course.

Unit: Forces in Multiple Dimensions **Big Ideas** Details For example, if we have the following forces acting on an object: honors & AP® 9N -6 N ← 18 N The net horizontal force (F_x) would be 18 N + (-6 N) = +12 N, and the net vertical force (F_v) would be 9 N + (-4 N) = +5 N. The total net force would be the resultant of the net horizontal and net vertical forces: 5N Fnet Using the Pythagorean Theorem: $a^{2} + b^{2} = c^{2}$ $5^{2} + 12^{2} = F_{net}^{2}$ $\sqrt{169} = F_{net} = 13 \text{ N}$ We can get the angle from trigonometry: $\tan\theta = \frac{opposite}{adjacent} = \frac{5}{12} = 0.417$ $\theta = \tan^{-1}(\tan \theta) = \tan^{-1}(0.417) = 22.6^{\circ}$ (Of course, because you have just figured out the length of the hypotenuse, you could get the same answer by using \sin^{-1} or \cos^{-1} .)

Big Ideas	Details Unit: Forces in Multiple Dimensions
honors & AP®	If we have one or more forces that is neither vertical nor horizontal, we can use trigonometry to split the force into a vertical component and a horizontal component.
	Recall the following relationships from trigonometry:
	h cos θ Suppose we have a force of 50 N at a direction of 35° above the horizontal. In the above diagram, this would mean that $h = 50$ N and $\theta = 35°$: The horizontal force is $\vec{F}_x = h \cos(\theta) = 50 \cos(35^\circ) = 41.0$ N The vertical force is $\vec{F}_x = h \sin(\theta) = 50 \sin(35^\circ) = 28.7$ N
	35°) 50 cos(35°) = 41.0 N
	Now, suppose that same object was subjected to the same 50 N force at an angle of 35° above the horizontal, but also a 20 N force to the left and a 30 N force downward.
	The net horizontal force would therefore be $41 + (-20) = 21$ N to the right.
	The net vertical force would therefore $-20 \text{ N} \ll 35^{\circ}$ be 28.7 + (-30) = -1.3 N upwards (which equals 1.3 N downwards). -30 N
	Once you have calculated the net vertical and horizontal forces, you can resolve them into a single net force, as in the previous example. (Because the vertical component of the net force is so small, an extra digit is necessary in order to see the difference between the total net force and its horizontal component.)
	+28.68 N -20 N $+20.95 \text{ N}$ -1.32 N 21.00 N

Use this space for summary and/or additional notes:

Use this space for summary and/or additional notes:

Use this space for summary and/or additional notes:

Big Ideas	Details	Unit: Forces in Multiple Dimensions
honors & AP®		Homework Problems
	1.	(M – honors; A – CP1) An object has three forces acting on it, a 15 N force pushing to the right, a 10. N force pushing to the right, and a 20. N force pushing to the left.
		a. (M – honors; A – CP1) Draw a free-body diagram for the object showing each of the forces that acts on the object (including a legend showing which direction is positive).
		 (M – honors; A – CP1) Calculate the magnitude of the net force on the object.
	2.	(M – honors; A – CP1) A force of 3.7 N horizontally and a force of 5.9 N at an angle of 43° act on a 4.5-kg block that is resting on a frictionless surface, as shown in the following diagram: 5.9 N
		3.7 N 43°
		What is the magnitude of the horizontal acceleration of the block?
		Answer: $1.8 \frac{m}{s^2}$

Big Ideas	Details	Unit: Forces in Multiple Dimensions
honors & AP®	3.	(S – honors; A – CP1) A stationary block has three forces acting on it: a 20. N force to the right, a 15 N force downwards, and a third force, \vec{R} of unknown magnitude and direction, as shown in the diagram to the right:
		 a. (S – honors; A – CP1) What are the horizontal and vertical components of R?
		b. (S – honors; A – CP1) What is the magnitude of \vec{R} ?
		Answer: 25 N
		 c. (S – honors; A – CP1) What is the direction (angle up from the horizontal) of R?
		Answer: 36.9°

Use this space for summary and/or additional notes:

Page: 337

Big Ideas	Details		Unit: Forces in Multiple Dimensions
honors & AP [®]	5.	(M – AP [®] ; S – honors; A – CP1) An	F _N F _{applied} = 160 N
		applied force of 160 N ($F_{applied}$) pulls at	T 🗶
		an angle of 60° (θ) on a crate that is	$\theta = 60^{\circ}$
		the crate (\vec{F}) is 200 N. The force of	E - 75 N
		friction on the crate (\vec{F}_{e}) is 75 N. These	r _f =75 N
		forces are shown in the diagram to the right.	<i>F</i> g = 200 N
		Using the variables but not the quantities	s from the diagram, derive an
		expression for the magnitude of the norr	nal force (\vec{F}_N) on the crate, in terms
		of the given quantities $\vec{F}_{applied}$, \vec{F}_{g} , \vec{F}_{f} , θ ,	and natural constants (such as $ec{m{g}}$).
		(If you are not sure how to do this proble guide your algebra.)	m, do #6 below and use the steps to
		Answer: $\vec{F}_{N} = \vec{F}_{g} - \vec{F}_{applied} \sin\theta$	

Use this space for summary and/or additional notes:

Big Ideas	Details	Unit: Forces in Multiple Dimensions
honors & AP®	6.	$(M - honors; A - CP1)$ An applied force F_N $F_{applied} = 160 N$
		of 160 N ($F_{applied}$) pulls at an angle of 60 (θ) on a crate that is sitting on a rough
		surface. The weight of the crate (\vec{F}_q) is
		200 N. The force of friction on the crate $F_f = 75 \text{ N}$
		(\vec{F}_{f}) is 75 N. These forces are shown in
		the diagram to the right. $F_g = 200 \text{ N}$
		(<u>You must start with the equations in</u> your Physics Reference Tables and show all of the steps of GUESS. You may
		only use the answer to question #5 above as a starting point if you have already solved that problem.)
		a. What is the magnitude of the normal force $(\vec{F}_{_N})$ on the crate?
		Answer: 61 N
		b. What is the acceleration of the crate?
		Answer: $0.25 \frac{m}{s^2}$

Use this space for summary and/or additional notes: