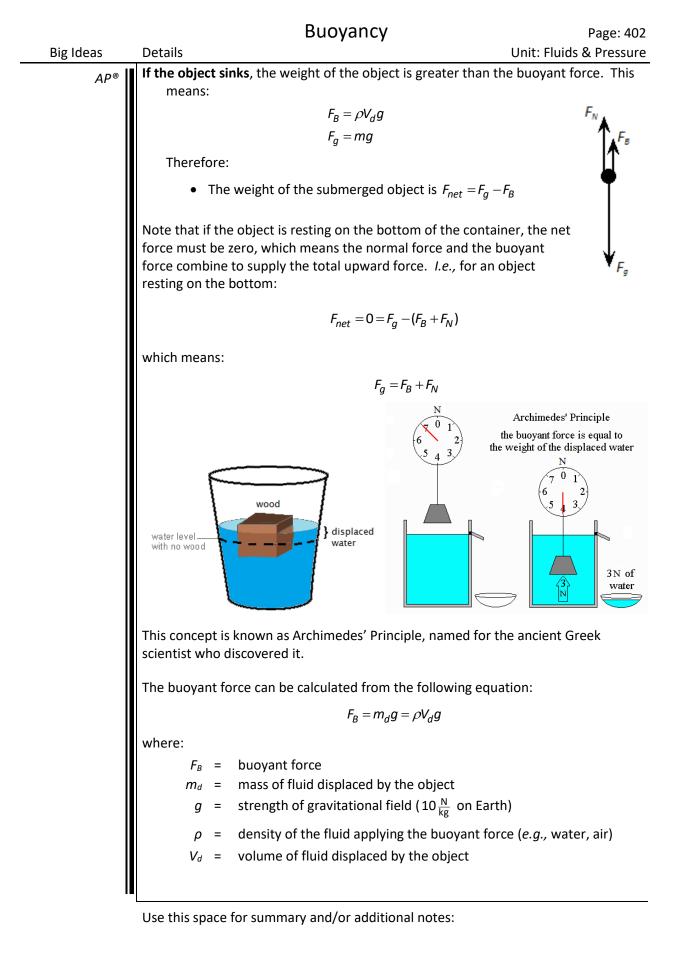

gideas	Details Unit: Fluids & Pressure
AP®	Buoyancy
	Unit: Fluids & Pressure
	NGSS Standards/MA Curriculum Frameworks (2016): HS-PS2-10(MA), HS-PS2-1
	AP [®] Physics 1 Learning Objectives/Essential Knowledge (2024): 8.3.B, 8.3.B.1, 8.3.B.2, 8.3.B.3
	Mastery Objective(s): (Students will be able to)
	 Solve problems involving the buoyant force on an object.
	 Use a free-body diagram to represent the forces on an object surrounded by a fluid.
	Success Criteria:
	 Problems are set up & solved correctly with the correct units.
	Language Objectives:
	• Explain why a fluid exerts an upward force on an object surrounded by it.
	Tier 2 Vocabulary: float, displace
	Labs, Activities & Demonstrations:
	Upside-down beaker with tissue
	 Ping-pong ball or balloon under water
	• beaker floating in water
	\circ right-side-up with weights
	\circ upside-down with trapped air
	 Spring scale with mass in & out of water on a balance
	• Cartesian diver
	• Aluminum foil & weights
	Cardboard & duct tape canoes
	Notes:
	displace: to push out of the way

Use this space for summary and/or additional notes:


Use this space for summary and/or additional notes:

Use this space for summary and/or additional notes:

	Buoyancy				
Big Ideas	Details	Unit: Fluids & Pressure			
AP®	Maximum Buoyant Force The maximum buoyant force on an object force of static friction.	is conceptually similar to the maximum			
	Friction	Buoyancy			
		Budyancy			
	Static friction is a reaction force that is equal to the force that caused it.	Buoyancy is a reaction force that is equal to the force that caused it (the weight of the object).			
	When static friction reaches its maximum value, the object starts moving.	When the buoyant force reaches its maximum value (<i>i.e.,</i> when the volume of water displaced equals the volume of the object), the object sinks.			
	When the object is moving, there is still friction, but the force is not strong enough to stop the object from moving.	When an object sinks, there is still buoyancy, but the force is not strong enough to cause the object to float.			
	Detailed Explanation If the object floats, there is no net force, which means the weight of the object is equal to the buoyant force. This means:				
	$F_{g} = F_{B}$ $mg = \rho V_{d}g$				
	Cancelling <i>g</i> from both sides gives <i>m</i> = to give the equation for density:	$e ho V_d$, which can be rearranged			
	$\rho = \frac{m}{V_d}$				
	Therefore:	¥			
	 If the object floats, the mass of the object equals the mass of the fluid displaced. 				
	equals the volume of the object that is				
		ng any air inside of it that is below the y of the fluid. (This is why a ship made of			

Use this space for summary and/or additional notes:

Physics 1 In Plain English

	Bacyancy	
Big Ideas	Details	Unit: Fluids & Pressu
AP®	Sample Problems:	
	Q: A cruise ship displaces 35 000 tonnes of water when it is	
	(1 tonne = 1000 kg) If sea water has a density of $1025 \frac{k}{m}$	$\frac{g}{2^3}$, what volume of
	water does the ship displace? What is the buoyant force	

Use this space for summary and/or additional notes:

Use this space for summary and/or additional notes:

Buoyancy

Big Ideas Details A: In order to lift Pasquale, $F_{\rm B} = F_{\rm g}$. AP® $F_g = mg = (16)(10) = 160 \text{ N}$ $F_B = \rho_{air} V_d g = (1.2) V_d$ (10) Because $F_{\rm B} = F_{\rm g}$, this means: $160 = 12 V_d$ $V_d = 13.\overline{3} \, \text{m}^3$ Assuming spherical balloons, the volume of one balloon is: $V = \frac{4}{3}\pi r^3 = (\frac{4}{3})(3.14)(0.14)^3 = 0.0115 \,\mathrm{m}^3$ Therefore, we need $\frac{13.\overline{3}}{0.0115}$ = 1160 balloons to lift Pasquale. However, the problem with this answer is that it doesn't account for the mass of the helium, the balloons and the strings. Each balloon contains $0.0115 \text{ m}^3 \times 0.166 \frac{\text{kg}}{\text{m}^3} = 0.00191 \text{ kg}$ of helium. Each empty balloon (including the string) has a mass of 2.37 g = 0.00237 kg. The total mass of each balloon full of helium is 1.91 g + 2.37 g = 4.28 g = 0.00428 kg. This means if we have *n* balloons, the total mass of Pasquale plus the balloons is 16 + 0.00428n kilograms. The total weight (in newtons) of Pasquale plus the balloons is therefore this number times 10, which equals 160 + 0.0428n. The buoyant force of one balloon is: $F_{B} = \rho_{air} V_{d} g = (1.2)(0.0115)(10) = 0.138 \text{ N}$ Therefore, the buoyant force of *n* balloons is 0.138*n* newtons. For Pasquale to be able to float, $F_{\rm B} = F_{\rm g}$, which means 0.138n = 0.0428n + 1600.0952n = 160n = 1680 balloons

Use this space for summary and/or additional notes:

		Buoyancy	Page: 406
Big Ideas	Details		Unit: Fluids & Pressure
AP®		Homework Problems	S
	1.	(M) A block is 0.12 m wide, 0.07 m long and 0.09	m tall and has a mass of
		0.50 kg. The block is floating in water with a dens	sity of $1000 \frac{\text{kg}}{\text{m}^3}$.
		a. What volume of the block is below the su	Irface of the water?
		Answer: $5 \times 10^{-4} \text{ m}^3$	
		b. If the entire block were pushed under wa would it displace?	iter, what volume of water
		Answer: $7.56 \times 10^{-4} \text{ m}^3$	
		c. How much <i>additional</i> mass could be piled it sinks?	d on top of the block before
		Answer: 0.256 kg	
	2.	(S) The SS United Victory was a cargo ship launch	ned in 1944. The ship had a
		mass of 15 200 tonnes fully loaded. (1 tonne = 1	•
		water is $1025 \frac{\text{kg}}{\text{m}^3}$. What volume of sea water did	the SS United Victory
		displace when fully loaded?	
		Answer: 14 829 m ³	

Use this space for summary and/or additional notes:

Buoyancy

		Dubyancy	Page. 407
Big Ideas	Details		Unit: Fluids & Pressure
AP®	3.	(S) An empty box is 0.11 m per side. It will slo	wly be filled with sand that has
		a density of $3500 \frac{\text{kg}}{\text{m}^3}$. What volume of sand v	vill cause the box to sink in
		water? Assume water has a density of 1000 $\frac{k}{m}$	$\frac{g}{r^3}$. Assume the box is
		neutrally buoyant, which means you may negl	ect the weight of the box.
Strategy:		Strategy:	
		a. Find the volume of the box.	
		b. Find the mass of the water displaced.	
		c. Find the volume of that same mass of	sand.
		Answer: $3.80 \times 10^{-4} \text{ m}^3$	

Use this space for summary and/or additional notes: