Big Ideas	Details
AP®	Fluid Motion & Bernoulli's Law
	Unit: Fluids & Pressure
	NGSS Standards/MA Curriculum Frameworks (2016): HS-PS2-10(MA), HS-PS2-1
	AP [®] Physics 1 Learning Objectives/Essential Knowledge (2024): 8.4.B, 8.4.B.1, 8.4.B.2, 8.4.B.3
	Mastery Objective(s): (Students will be able to)
	 Solve problems involving fluid flow using Bernoulli's Equation.
	Success Criteria:
	 Problems are set up & solved correctly with the correct units.
	Language Objectives:
	 Explain why a fluid has less pressure when the flow rate is faster.
	Tier 2 Vocabulary: fluid, velocity
	Labs, Activities & Demonstrations:
	 Blow across paper (unfolded & folded)
	 Blow between two empty cans.
	 Ping-pong ball and air blower (without & with funnel)
	Venturi tube
	• Leaf blower & large ball
	Notes:
	Dynamic Pressure
	When a fluid is flowing, the fluid must have kinetic energy, which equals the work that it takes to move that fluid.
	Recall the equations for work and kinetic energy:
	$K = \frac{1}{2}mv^2$
	$W = \Delta K = F_{\parallel} d$
	Combining these (the work-energy theorem) gives $\frac{1}{2}mv^2 = F_{\parallel}d$.
	Solving $P_D = \frac{F}{A}$ for force gives $F = P_D A$. Substituting this into the above equation gives:
	$\frac{1}{2}mv^2 = F_{\parallel}d = P_DAd$
1	

Big Ideas Details

Rearranging the above equation to solve for dynamic pressure gives the following. Because volume is area times distance (V = Ad), we can then substitute V for Ad:

$$P_D = \frac{\frac{1}{2}mv^2}{Ad} = \frac{\frac{1}{2}mv^2}{V}$$

Finally, rearranging $\rho = \frac{m}{V}$ to solve for mass gives $m = \rho V$. This means our equation becomes:

$$P_{D} = \frac{\frac{1}{2}mv^{2}}{V} = \frac{\frac{1}{2}\rho/v^{2}}{V} = \frac{1}{2}\rho v^{2}$$
$$P_{D} = \frac{1}{2}\rho v^{2}$$

Bernoulli's Principle

Bernoulli's Principle, named for Dutch-Swiss mathematician Daniel Bernoulli states that the pressures in a moving fluid are caused by a combination of:

- The hydrostatic pressure: $P_H = \rho g h$
- The dynamic pressure: $P_D = \frac{1}{2}\rho v^2$
- The "external" pressure, which is the pressure that the fluid exerts on its surroundings. (This is the pressure we would measure with a pressure gauge.)

A change in any of these pressures affects the others, which means:

$$P_{ext.} + P_H + P_D = \text{constant}$$
$$P_{ext.} + \rho gh + \frac{1}{2}\rho v^2 = \text{constant}$$

The above equation is Bernoulli's equation.

Use this space for summary and/or additional notes:

Big Ideas	Details				
AP®	Torricelli's Theorem				
	A special case of Bernoulli's Principle was discovered almost 100 years earlier, in 1643 by Italian physicist and mathematician Evangelista Torricelli. Torricelli observed that in a container with fluid effusing (flowing out) through a hole, the more fluid there is above the opening, the faster the fluid comes out.				
	Torricelli found that the velocity of the fluid was the same as the velocity would have been if the fluid were falling straight down, which can be calculated from the change of gravitational potential energy to kinetic energy:				
	$\frac{1}{2}mv^{2} = mgh \rightarrow v^{2} = 2gh \rightarrow v = \sqrt{2gh}$ Torricelli's theorem can also be derived from Bernoulli's equation*:				
	$P_1 + \rho g h_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g h_2 + \frac{1}{2} \rho v_2^2$				
	 The external pressures (P₁ and P₂) are both equal—atmospheric pressure—so they cancel. 				
	 The fluid level is going down slowly enough that the velocity of the fluid inside the container (v₁) is essentially zero. 				
	• Once the fluid exits the container, the hydrostatic pressure is zero ($\rho g h_2 = 0$).				
	This leaves us with:				
	We could do a similar proof from the kinematic equation: $v^2 - v_o^2 = 2ad$				
	Substituting $a = g$, $d = h$, and $v_o = 0$ gives $v^2 = 2gh$ and therefore $v = \sqrt{2gh}$				
	Note: as described in Hydrostatic Pressure, starting on page 393, hydrostatic pressure is caused by the fluid above the point of interest, meaning that height is measured <u>upward</u> , not downward. In the above situation, the two points of interest for the application of Bernoulli's law are actually:				
	 inside the container next to the opening, where there is fluid above, but essentially no movement of fluid (v = 0, but h ≠ 0) 				
	 outside the opening where there is no fluid above, but the jet of fluid is flowing out of the container (h = 0, but v ≠ 0) 				
	* On the AP [®] Physics exam, you must start problems from equations that are on the formula sheet. This means you may not use Torricelli's Theorem on the exam unless you first derive it from				

Use this space for summary and/or additional notes:

Bernoulli's Equation.

Use this space for summary and/or additional notes:

Big Ideas	Details			
AP®	Sample Problems:			
	Q: A fluid in a pipe with a <u>diameter</u> of 0.40 m is moving with a velocity of $0.30 \frac{\text{m}}{\text{s}}$. If			
	the fluid moves into a second pipe with half the diameter, what will the new fluid velocity be?			
	A: The cross-sectional area of the first pipe is:			
	$A_1 = \pi r^2 = (3.14)(0.20)^2 = 0.126 \text{ m}^2$			
	The cross-sectional area of the second pipe is:			
	$A_2 = \pi r^2 = (3.14)(0.10)^2 = 0.0314 \text{ m}^2$			
	Using the continuity equation:			
	$A_1 v_1 = A_2 v_2$ $A_1 v_1 = A_2 v_2 (0.126)(0.30) = (0.0314) v_2$			
	$v_2 = 1.2 \frac{m}{s}$			
	Q: A fluid with a density of $1250 \frac{\text{kg}}{\text{m}^3}$ has a pressure of 45 000 Pa as it flows at $1.5 \frac{\text{m}}{\text{s}}$			
	through a pipe. The pipe rises to a height of 2.5 m, where it connects to a second, smaller pipe. What is the pressure in the smaller pipe if the fluid flows at a rate of $3.4 \frac{m}{s}$ through it?			
	A: $P_1 + \rho g h_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g h_2 + \frac{1}{2} \rho v_2^2$			
	$45000 + (1250)(10)(0) + \left(\frac{1}{2}\right)(1250)(1.5)^2 = P_2 + (1250)(10)(2.5) + \left(\frac{1}{2}\right)(1250)(3.4)^2$			
	$45000 + 1406 = P_2 + 31250 + 7225$			
	<i>P</i> ₂ = 7931 Pa			
I				

Big Ideas	Details	
AP®		Homework Problem
	1.	(M) At point A on the pipe to the right, the
		water's speed is $4.8 \frac{\text{m}}{\text{s}}$ and the external
		pressure (the pressure on the walls of the pipe) is 52.0 kPa. The water drops 14.8 m to point B, where the pipe's cross-sectional area is twice that at point A.
		a. Calculate the velocity of the water at point B.
		Answer: 2.4 $\frac{m}{s}$
		 b. Calculate the external pressure (the pressure on the walls of the pipe) at point B.
		Answer: 208 600 Pa or 208.6 kPa