	introduction. Gravitation	Page. 421			
Big Ideas	Details U	Jnit: Gravitation			
	Introduction: Gravitation				
	Unit: Gravitation				
	Topics covered in this chapter:				
	Early Theories of the Universe	424			
	Kepler's Laws of Planetary Motion	427			
	Universal Gravitation	429			
	In this chapter you will learn about different kinds of forces and ho	w they relate.			
	• <i>Early Theories of the Universe</i> describes the geocentric (Earth-original of the universe, and the theories of Ptolemy and Copernicus.	centered) model			
	• <i>Kepler's Laws of Planetary Motion</i> describes the motion of planets and other celestial bodies and the time period that it takes for planets to revolve around stars throughout the universe.				
	• Universal Gravitation describes how to calculate the force of m gravitational attraction between massive objects such as plane				
AP®	This unit is part of <i>Unit 2: Force and Translational Dynamics</i> from the AP [®] Physics 1 Course and Exam Description.	2024			
	Standards addressed in this chapter:				
	NGSS Standards/MA Curriculum Frameworks (2016):				
	HS-PS2-4: Use mathematical representations of Newton's Law and Coulomb's Law to describe and predict the gravitation electrostatic forces between objects.				
AP®	AP [®] Physics 1 Learning Objectives/Essential Knowledge (2024):				
	2.6.A : Describe the gravitational interaction between two objection with mass.	ects or systems			
	2.6.A.1: Newton's law of universal gravitation describes the force between two objects or systems as directly proport their masses and inversely proportional to the square of between the systems' centers of mass.	tional to each of			
	2.6.A.1.i : The gravitational force is attractive.				
	2.6.A.1.ii : The gravitational force is always exerted along the connecting the centers of mass of the two interacting systems				
	2.6.A.1.iii : The gravitational force on a system can be consid exerted on the system's center of mass.				

Use this space for summary and/or additional notes:

Introduction: Gravitation

Big Ideas	Details	Unit: Gravitation
AP [®]	2.6.A.2 : A field models the effects of a noncontact force	
AP °	object at various positions in space.	
	2.6.A.2.i: The magnitude of the gravitational field create mass <i>M</i> at a point in space is equal to the ratio of the exerted by the system on a test object of mass <i>m</i> to object.	e gravitational force
	2.6.A.2.ii: If the gravitational force is the only force exer the observed acceleration of the object (in m/s ²) is n the magnitude of the gravitational field strength (in location.	umerically equal to
	2.6.A.3: The gravitational force exerted by an astronom relatively small nearby object is called weight.	ical body on a
	2.6.B : Describe situations in which the gravitational force constant.	can be considered
	2.6.B.1: If the gravitational force between two systems' a negligible change as the relative position of the tw the gravitational force can be considered constant a the initial and final positions of the systems.	o systems changes,
	2.6.B.2 : Near the surface of Earth, the strength of the gr $\vec{g} \approx 10 \frac{N}{kg}$.	ravitational field is
	2.6.C: Describe the conditions under which the magnitude apparent weight is different from the magnitude of the exerted on that system.	
	2.6.C.1 : The magnitude of the apparent weight of a syst of the normal force exerted on the system.	em is the magnitude
	2.6.C.2: If the system is accelerating, the apparent weig not equal to the magnitude of the gravitational force system.	
	2.6.C.3: A system appears weightless when there are not the system or when the force of gravity is the only for system.	
	2.6.C.4: The equivalence principle states that an observer reference frame is unable to distinguish between an weight and the gravitational force exerted on the obgravitational field.	object's apparent
	2.6.D : Describe inertial and gravitational mass.	
	2.6.D.1: Objects have inertial mass, or inertia, a propert how much an object's motion resists changes when another object.	•
	2.6.D.2 : Gravitational mass is related to the force of attr systems with mass.	raction between two

Use this space for summary and/or additional notes:

Big Ideas	Details		Unit: Gravitation
AP®	2.	.6.D.3: Inertial mass and gravitational mass have been e verified to be equivalent.	experimentally
	2.9	.B: Describe circular orbits using Kepler's third law.	
	2.	.9.B.1 : For a satellite in circular orbit around a central b centripetal acceleration is caused only by gravitationa period and radius of the circular orbit are related to t central body.	al attraction. The
	Skills lea	arned & applied in this chapter:	
		imating the effect of changing one variable on other var uation.	iables in the same
	L		

Use this space for summary and/or additional notes: