Work

Unit: Energy, Work & Power

NGSS Standards/MA Curriculum Frameworks (2016): HS-PS3-1

AP® Physics 1 Learning Objectives/Essential Knowledge (2024): 3.2.A, 3.2.A.1,

3.2.A.1.i, 3.2.A.1.ii, 3.2.A.1.iii, 3.2.A.1.iv, 3.2.A.1.v, 3.2.A.2, 3.2.A.3, 3.2.A.3.i,

3.2.A.3.ii, 3.2.A.4, 3.2.A.4.i, 3.2.A.4.i, 3.2.A.4.ii, 3.2.A.4.iii, 3.2.A.5

Mastery Objective(s): (Students will be able to ...)

• Calculate the work done when a force displaces an object .

Success Criteria:

- Variables are correctly identified and substituted correctly into equation(s).
- Algebra is correct and rounding to appropriate number of significant figures is reasonable.

Language Objectives:

• Explain why a longer lever arm is more effective.

Tier 2 Vocabulary: work, energy

Notes:

In high school physics, there are two ways that we will study of transferring energy into or out of a system:

work (W): mechanical energy transferred into or out of a system by a net force acting over a distance.

<u>heat</u> (*Q*): thermal energy transferred into or out of a system. Heat is covered in Physics 2.

If you lift a heavy object off the ground, you are giving the object gravitational potential energy (in the object-Earth system). The Earth's gravitational field can now cause the object to fall, turning the potential energy into kinetic energy. Therefore, we would say that you are doing work against the force of gravity.

Work is the amount of energy that was added to the object $(W = \Delta E)^*$. (In this case, because the work was turned into *potential* energy, we would say that $W = \Delta U$.)

Many texts start with work as the application of force over a distance, and then discuss energy. Those texts then derive the <u>work-energy theorem</u>, which states that the two quantities are equivalent. In these notes, we instead started with energy, and then defined work as the change in energy. This presentation makes the concept of work more intuitive, especially when studying other energy-related topics such as thermodynamics.

	Work Page: 451
Big Ideas	Details Unit: Energy, Work & Power
	Mathematically, work is also the effect of a force applied over a distance (the dot product of the force vector and the displacement vector). Therefore:
	$\Delta E = W = \vec{F} \cdot \vec{d}$
	Recall that the dot product is one of three ways of multiplying vectors. The dot product is a scalar quantity (a number, including its units, but without a direction), and is equal to the product of the magnitudes of the force and distance, and the cosine of the angle between them. This means:
	$W = Fd\cos\theta = F_{\parallel}d$
	Where <i>F</i> is the magnitude of the force vector \vec{F} , <i>d</i> is the magnitude of the displacement vector \vec{d} , and θ is the angle between the two vectors. Sometimes $F \cos \theta$ is written as F_{\parallel} , which means "the component of the force that is parallel to the direction of motion."
	Note that when the force and the displacement are in the same direction, the angle $\theta = 0^{\circ}$ which means $\cos \theta = \cos(0^{\circ}) = 1$. In this case, $F_{ } = F \cos \theta = (F)(1) = F$ and the equation reduces to $W = Fd$.
	Work is measured in joules (J) or newton-meters (N·m), which are equivalent.
	$1N \cdot m \equiv 1J \equiv 1 \frac{kg \cdot m^2}{s^2}$
	Positive <i>vs.</i> Negative Work
	Recall that in physics, we use positive and negative numbers to indicate direction. So far, we have used positive and negative numbers for one-dimensional vector quantities (<i>e.g.</i> , velocity, acceleration, force) to indicate the direction of the vector. We can also use positive and negative numbers to indicate the direction for energy (and other scalar quantities), to indicate whether the energy is being transferred into or out of a system.
	 If the <i>energy</i> of an object or system <i>increases</i> because of work (energy is transferred <u>into</u> the object or system), then the <i>work</i> is <i>positive</i> with respect to that object or system.
	 If the <i>energy</i> of an object or system <i>decreases</i> because of work (energy is transferred <u>out of</u> the object or system), then the <i>work</i> is <i>negative</i> with respect to that object or system.
	However, we often discuss work using the prepositions <u>on</u> (into) and <u>by</u> (out of).
	 If energy is transferred <i>into</i> an object or system, then we can say that work was done <u>on</u> (into) the object or system, or that work was done <u>by</u> (out of) the surroundings.
	 If energy was transferred <i>out of</i> an object or system, we can say that work was done <u>by</u> (out of) the object, or we can say that work was done <u>on</u> (into) the surroundings.

Big Ideas	Details	Unit: Energy, Work & Power
	Example:	
	A truck pushes a 1000 kg car up a 50 m hill. The car ga $U_g = mgh = (1000)(10)(50) = 500000 \text{ J}$ of potential ener	ined gy. We could say that:
	 500 000 J of work was done <u>on</u> the car (by the t 	ruck).
	 500 000 J of work was done <u>by</u> the truck (on the 	e car).
	 -500 000 J of work was done <u>on</u> the truck (by the truck) 	ne car).
	A simple way to tell if a force does positive or negative the equation $W = \vec{F} \cdot \vec{d}$. If the force and the displacement then the work done by the force is positive . If the force opposite directions, then the work done by the force is	work on an object is to use eent are in the <i>same</i> direction, e and displacement are in s <i>negative</i> .
	Example:	
	Suppose a force of 750 N is used to push a cart against distance of 20 m. The work done <u>by</u> the force is $W = F_{\parallel}$ work done <u>by</u> friction is $W = F_{\parallel}d = (-250)(20) = -5000 \text{ J}$ in the negative direction). The total (net) work done or $15000 + (-5000) = 10000 \text{ J}$.	250 N of friction for a $f_1d = (750)(20) = 15000 \text{ J}$. The (negative because friction is n the cart is
	We could also figure out the net work done on the card force: $W_{net} = F_{net,\parallel}d = (750 - 250)(20) = (500)(20) = 10000$	t directly by using the net 0 J
	Notes:	
	 If the displacement is zero, no work is done by the for box without moving it, you are exerting a force (cou- but you are not doing work. 	orce. <i>E.g.,</i> if you hold a heavy nteracting the force of gravity)
	• If the net force is zero, no work is done by the displation of the object. <i>E.g.</i> , if a cart is sliding across a friction velocity, the net force on the cart is zero, which means	cement (change in location) lless air track at a constant ins no work is being done.
	 If the displacement is perpendicular to the direction which means cos θ = 0), no work is done by the forc heavy object along a roller conveyor, because the fo vertically and the object's displacement is horizonta normal force cancel, and you therefore do not have gravity. 	of the applied force (θ = 90°, e. <i>E.g.</i> , you can slide a very rce of gravity is acting I, which means gravity and the to do any work against

Force vs. Distance Graphs

Recall that on a graph, the area "under the graph" (between the graph and the x-axis)^{*} represents what you get when you multiply the quantities on the x and y-axes by each other.

Because $W = F_{||}d$, if we plot force *vs*. distance, the area "under the graph" is therefore the work:

In the above example, $(3N)(3m) = 9N \cdot m = 9J$ of work was done on the object in the interval from 0–3 s, 2.25 J of work was done on the object in the interval from 3–4.5 s, and –2.25 J of work was done on the object in the interval from 4.5–6 s. (Note that the work from 4.5–6 s is negative, because the force was applied in the negative direction during that interval.) The total work is therefore 9+2.25+(-2.25)=+9J.

* In most physics and calculus textbooks, the term "area under the graph" is used. This term <u>always</u> means the area <u>between the graph and the x-axis</u>.

		Work	Page: 455
Big Ideas	Details		Unit: Energy, Work & Power
	Sample	Problems:	
	Q: How cons	much work does it take to lift a 60. kg box 2 tant velocity over a period of 3.0 s?	1.5 m off the ground at a
	A: The b	ox is being lifted, which means the work is o	done against the force of gravity.
		$W = F_{ } \cdot d = F_g d$ $W = F_g d = [mg]d = [(60)(10)](1.5) = [600](1.5)$	=900 J
	Note amo	e that the amount of time it took to lift the b unt of work done.	oox has nothing to do with the
	lt ma in or velo of th	ay be tempting to try to use the time to calc der to calculate the force. However, becaus city, the only force needed to lift the box is a e box (F_g).	ulate velocity and acceleration se the box is lifted at a constant enough to overcome the weight
	In ge grav	meral, if work is done to move an object verty, and you need to use $a = g = 10 \frac{m}{s^2}$ for the	tically, the work is done against e acceleration when you
	calcu	llate $F = ma$.	
	Simi grav from	arly, if work is done to move an object horizity and either you need to know the force and the acceleration of the object using <i>F</i> = <i>ma</i>	zontally, the work is <i>not</i> against pplied or you need to find it
	Q: In th the l at ar If the	e picture to the right, the adult is pulling on nandle of the wagon with a force of 150. N nangle of 60.0°. e adult pulls the wagon a distance of m how much work does he do?	A
	500.	III, now much work does ne do:	
	A: <i>W</i> =	$F_{ }d$	
	W =	$[F\cos\theta]d = [(150.)\cos 60.0^{\circ}](500.) = [(150.)(60.0^{\circ})](500.) = [(150.)(60.0^{\circ})](500.)) = [(150.)(60.)(60.)(60.))](500.)) = [(150.)(60.)(60.)(60.)(60.))](500.)) = [(150.)($	0.500)](500.) = 37500 J

		Work	Page: 456
Big Ideas	Details		Unit: Energy, Work & Power
		Homework Proble	ems
	1.	(S) How much work is done against gravity by barbell 1.5 m upwards at a constant speed?	y a weightlifter lifting a 30. kg
	2.	Answer: 450 J (M) A 3000. kg car is moving across level gro acceleration that ends with the car moving at situation? How do you know?	und at $5.0 \frac{m}{s}$ when it begins an t $15.0 \frac{m}{s}$. Is work done in this
	3.	(S) A 60. kg man climbs a 3.0 m tall flight of s done by the man against the force of gravity?	tairs. How much work was
		Answer: 1 800 J	

