
Big Ideas	Introduction: Simple Harmonic MotionPage: 49DetailsUnit: Simple Harmonic Motion
	Introduction: Simple Harmonic Motion
	Unit: Simple Harmonic Motion
	Topics covered in this chapter:
	Simple Harmonic Motion
	Springs
	Pendulums
	This chapter discusses the physics of simple harmonic (repetitive) motion.
	• <i>Simple Harmonic Motion</i> (SHM) describes the concept of repetitive back-and forth motion and situations that apply to it.
	• <i>Springs</i> and <i>Pendulums</i> describe specific examples of SHM and the specific equations relating to each.
AP®	This unit is part of <i>Unit 7: Oscillations</i> from the 2024 AP [®] Physics 1 Course and Exar Description.
	Standards addressed in this chapter:
	NGSS Standards/MA Curriculum Frameworks (2016):
	No MA Curriculum Frameworks are addressed in this chapter.
AP®	AP [®] Physics 1 Learning Objectives/Essential Knowledge (2024):
	2.8.A: Describe the force exerted on an object by an ideal spring.
	2.8.A.1: An ideal spring has negligible mass and exerts a force that is proportional to the change in its length as measured from its relaxed length.
	2.8.A.2 : The magnitude of the force exerted by an ideal spring on an object is given by Hooke's law: $\vec{F}_s = -k\Delta \vec{x}$.
	2.8.A.3: The force exerted on an object by a spring is always directed toward the equilibrium position of the object–spring system.
	3.3.A.4.i : The elastic potential energy of an ideal spring is given by the following equation, where x is the distance the spring has been stretched or compressed from its equilibrium length.
	7.1.A : Describe simple harmonic motion.
	7.1.A.1 : Simple harmonic motion is a special case of periodic motion.
	7.1.A.2: SHM results when the magnitude of the restoring force exerted of an object is proportional to that object's displacement from its equilibrium position.

Introduction: Simple Harmonic Motion

Big Ideas	Details	Unit: Simple Harmonic Motion
AP®		7.1.A.2.i : A restoring force is a force that is exerted in a direction opposite to the object's displacement from an equilibrium position.
		7.1.A.2.ii : An equilibrium position is a location at which the net force exerted on an object or system is zero.
		7.1.A.2.iii : The motion of a pendulum with a small angular displacement can be modeled as simple harmonic motion because the restoring torque is proportional to the angular displacement.
	7.2	2.A : Describe the frequency and period of an object exhibiting SHM.
	7	7.2.A.1: The period of SHM is related to the frequency <i>f</i> of the object's
		motion by the following equation: $T = \frac{1}{f}$.
		7.2.A.1.i: The period of an object-ideal-spring oscillator is given by the
		equation: $T_s = 2\pi \sqrt{\frac{m}{k}}$.
		7.2.A.1.ii : The period of a simple pendulum displaced by a small angle is
		given by the equation: $T_p = 2\pi \sqrt{\frac{\ell}{g}}$.
	7.3	B.A: Describe the displacement, velocity, and acceleration of an object exhibiting SHM.
	7	7.3.A.1 : For an object exhibiting SHM, the displacement of that object measured from its equilibrium position can be represented by the equations: $x = A\cos(2\pi ft)$ or $x = A\sin(2\pi ft)$.
		7.3.A.1.i : Minima, maxima, and zeros of displacement, velocity, and acceleration are features of harmonic motion.
		7.3.A.1.ii : Recognizing the positions or times at which the displacement, velocity, and acceleration for SHM have extrema or zeros can help in qualitatively describing the behavior of the motion.
	7	7.3.A.2 : Changing the amplitude of a system exhibiting SHM will not change the period of that system.
	7	7.3.A.3 : Properties of SHM can be determined and analyzed using graphical representations.
	7.4	I.A: Describe the mechanical energy of a system exhibiting SHM.
	7	7.4.A.1: The total energy of a system exhibiting SHM is the sum of the system's kinetic and potential energies.
	7	7.4.A.2: Conservation of energy indicates that the total energy of a system exhibiting SHM is constant.
	7	7.4.A.3: The kinetic energy of a system exhibiting SHM is at a maximum when the system's potential energy is at a minimum.
	7	7.4.A.4: The potential energy of a system exhibiting SHM is at a maximum when the system's kinetic energy is at a minimum.
		7.4.A.4.i : The minimum kinetic energy of a system exhibiting SHM is zero.

