
	Impulse	Page: 500		
Ideas	Details	Unit: Momentum		
	Impulse			
	• Unit: Momentum			
	NGSS Standards/MA Curriculum Frameworks (2016): HS-PS	S2-2		
	AP [®] Physics 1 Learning Objectives/Essential Knowledge (2024): 4.2.A, 4.2.A.1,			
	4.2.A.2, 4.2.A.3, 4.2.A.4, 4.2.A.5, 4.2.B, 4.2.B.1, 4.2.B.2	, 4.2.B.3		
	Mastery Objective(s): (Students will be able to)			
	Calculate the change in momentum of (impulse applie			
	Calculate impulse as a force applied over a period of ti			
	Calculate impulse as the area under a force-time graph.			
	Success Criteria:			
	• Masses and velocities are correctly identified as before and after the collision.			
	 Variables are correctly identified and substituted correport of the equation. 	ectly into the correct		
	 Algebra is correct and rounding to appropriate numbe reasonable. 	r of significant figures is		
	Language Objectives:			
	 Explain the similarities and differences between impul 	se and work.		
	Tier 2 Vocabulary: momentum, impulse			
	Notes:			
	<u>impulse</u> (\vec{J}) : the effect of a force applied over a period of the momentum.	me; the accumulation of		
	Mathematically, impulse is a change in momentum, and is also equal to for time:			
	$\Delta \vec{p} = \vec{J} = \vec{F}t$ and $\vec{F} = \frac{\vec{J}}{t} = \frac{\Delta \vec{p}}{t} = \frac{d\vec{p}}{dt}$	<u>.</u> t		
	Where \vec{F} is the force vector and, t is time.			
	Impulse is measured in newton-seconds (N·s), just like mom	entum.		
	Impulse is analogous to work:			
	 Work is a change in energy; impulse is a change in momentum. 			
	• Work is the accumulation of force over a distance (W	$V = \vec{F} \bullet \vec{d}$;		
	Impulse is the accumulation of force over a time $(\vec{J} =$	F t)		
	• Work is the accumulation of force over a distance (W			

Impulse

Just as work is the area of a graph of force *vs.* distance, impulse is the area under a graph of force *vs.* time:

In the above graph, the impulse from time zero to t_1 would be Δp_1 . The impulse from t_1 to t_2 would be Δp_2 , and the total impulse would be $\Delta p_1 + \Delta p_2$ (keeping in mind that Δp_2 is negative).

Sample Problem:

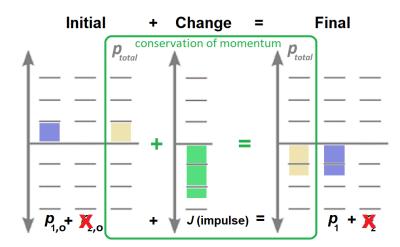
Big Ideas

Details

- Q: A baseball has a mass of 0.145 kg and is pitched with a velocity of $38 \frac{m}{s}$ toward home plate. After the ball is hit, its velocity is $52 \frac{m}{s}$ in the opposite direction, toward the center field fence. If the impact between the ball and bat takes place over an interval of 3.0 ms (0.0030 s), find the impulse given to the ball by the bat, and the force applied to the ball by the bat.
- A: The ball starts out moving toward home plate. The bat applies an impulse in the **opposite** direction. As with any vector quantity, opposite directions means we will have opposite signs. If we choose the initial direction of the ball (toward home plate) as the positive direction, then the initial velocity is $+38 \frac{m}{s}$, and the

final velocity is $-52 \frac{m}{s}$. Because mass is scalar and always positive, this means the initial momentum is positive and the final momentum is negative.

Furthermore, because the final velocity is about $1\frac{1}{2}$ times as much as the initial velocity (in the opposite direction) and the mass doesn't change, this means the impulse needs to be enough to negate the ball's initial momentum plus enough in addition to give the ball about $1\frac{1}{2}$ times as much momentum in the opposite direction.


Impulse

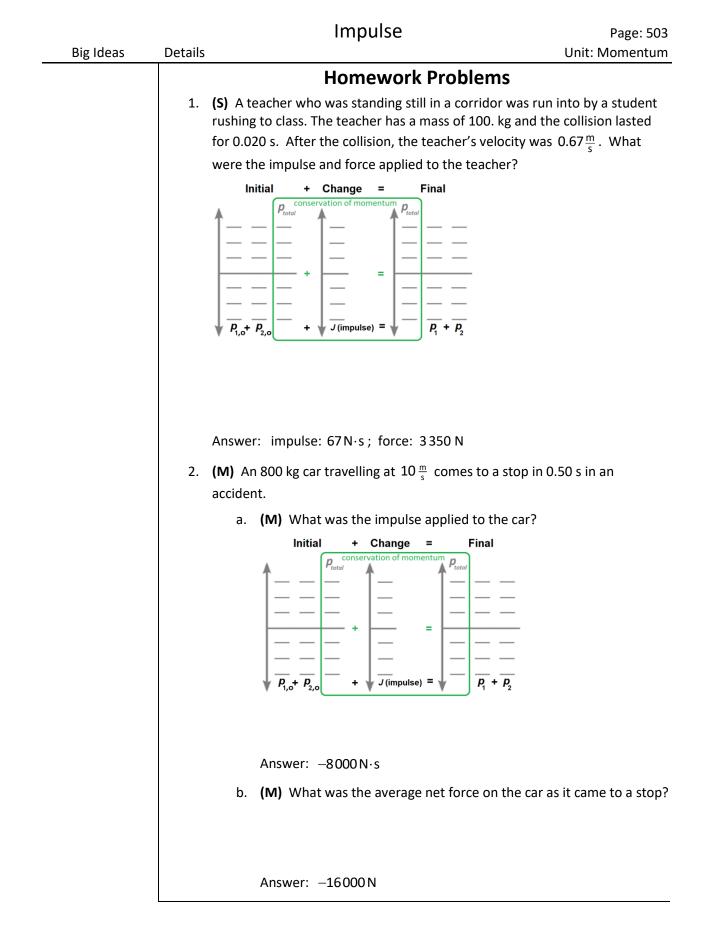
Big Ideas

Details

Just like the energy bar charts (LOL charts) that we used for conservation of energy problems, we can create a momentum bar chart. However, because momentum is a vector, we use positive and negative numbers to indicate direction for collisions in one dimension, just like we used positive and negative numbers to indicate direction for velocity, acceleration and force. This means that our momentum bar chart needs to be able to accommodate positive and negative values.

In our problem, the pitcher initially threw the ball in the positive direction. When the batter hit the ball, the impulse on the ball caused it change direction. The momentum bar chart would look like the following:

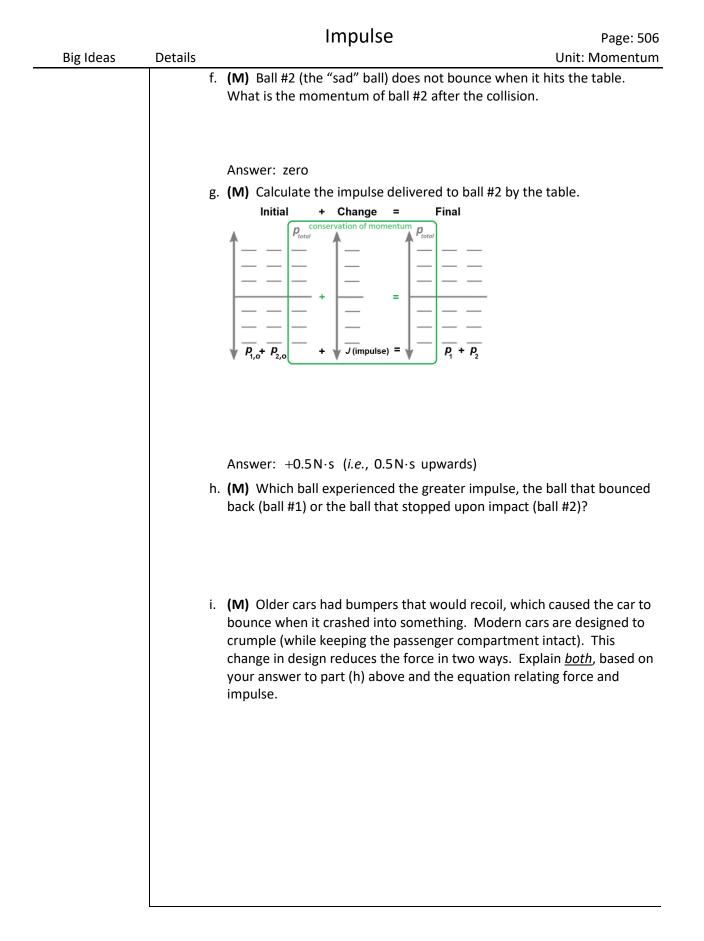
The chart shows us the equation so we can solve the problem mathematically:


$$\vec{p}_{1,o} + \vec{J} = \vec{p}_1$$

 $m\vec{v}_o + \vec{J} = m\vec{v}$
(0.145)(38) + $\vec{J} = (0.145)(-52)$
 $5.51 + \vec{J} = -7.54$
 $\vec{J} = -13.05 \,\text{N}\cdot\text{s}$

The negative value for impulse means that it was in the opposite direction from the baseball's original direction, which makes sense.

Now that we know the impulse, we can use $\vec{J} = \vec{F}t$ to find the force from the bat.


 $\vec{J} = \vec{F}t$ -13.05 = \vec{F} (0.003) $\vec{F} = \frac{-13.05}{0.003} = -4350 \text{ N}$

Therefore, the force was 4350 N toward center field.

Pig Ideas	Details	Impulse	Page: 504 Unit: Momentum
Big Ideas	3. For gra	The is applied to a 2.0 kg block on a frictionless surface of the ph below. $F(N) = \int_{-4}^{F(N)} \int_{-4}^{0} \int_{-4}^{0}$	
		a. (M) What is the momentum of the block at t	ime <i>t</i> = 0?
		Answer: $6N \cdot s$ (<i>Note: this is the starting moments</i> b. (S) What is the impulse applied to the block $0-2 s$? What are the momentum and velocity $t = 2 s$?	during the interval from
		Answer: $\vec{J} = +8.0 \text{ N} \cdot \text{s}$; $\vec{p} = +14.0 \text{ N} \cdot \text{s}$; $\vec{v} = +$ c. (M) What is the impulse applied to the block from 0–6 s? What are the momentum and velocity t = 6 s?	during the interval
		Answer: $\vec{J} = +29.0 \text{ N} \cdot \text{s}; \vec{p} = +35.0 \text{ N} \cdot \text{s}; \vec{v} = -6000 \text{ (Note: } +35.0 \text{ N} \cdot \text{s} will be the starting means of the starting means of the starting means of the start o$	omentum for part (d).) during the interval from
		Answer: $\vec{J} = -14.0 \text{N} \cdot \text{s}; \vec{p} = +21 \text{N} \cdot \text{s}; \vec{v} = +21 \text{N} \cdot \text{s};$	10.5 <u>m</u>

		Impulse	Page: 505
Big Ideas	Details	·	Unit: Momentum
	4.	(M) Two balls, each with a mass of 0.1 kg, are dropped from 1.25 m and bounce off a table.	om a height of
		a. (M) Calculate the velocity of each ball just before it co (<i>Hint: This is a conservation of energy problem</i> .)	ollides the table.
		Answer: $-5\frac{m}{s}$ (<i>i.e.</i> , $5\frac{m}{s}$ downwards)	
		 b. (M) Calculate the momentum of each ball just before table. 	it collides with the
		Answer: -0.5N·s (<i>i.e.,</i> 0.5N·s downwards)	
		 c. (M) Ball #1 (the "happy" ball) bounces back to a heigl Calculate the velocity of ball #1 immediately after the (<i>Hint: This is a conservation of energy problem.</i>) 	
		Answer: $+4 \frac{m}{s}$ (<i>i.e.</i> , $4 \frac{m}{s}$ upwards) d. (M) Calculate the momentum of ball #1 after the coll	ision.
		Answer: +0.4 N·s (<i>i.e.</i> , 0.4 N·s upwards)	
		e. (M) Calculate the impulse delivered to ball #1 by the Initial + Change = Final P_{total} conservation of momentum P_{total} P_{total} + P_{total} = P_{total} - P_{tot	table.
		Answer: +0.9 N·s	

