

Big Ideas Details Deta **Length Contraction** *CP1 & honors (not AP®)*If an object is moving at relativistic speeds and the velocity of light must be constant, then distances must become shorter as velocity increases. This means that as the velocity of an object approaches the speed of light, distances in its reference frame approach zero. The Dutch physicist Hendrick Lorentz determined that the apparent change in length should vary according to the formula: 2 $L = L_o \sqrt{1 - \frac{V^2}{c^2}}$ where: *L* = length of moving object *L*^o = "proper length" of object (length of object at rest) *v* = velocity of object *c* = velocity of light The ratio of *L*^o to *L* is named after Lorentz and is called the Lorentz factor (*γ*): 1 $\gamma =$ 2 $1 - \frac{v^2}{c^2}$ − 2 The contracted length is therefore given by the equations: $L = \frac{L_o}{L}$ *o L* 1 or $=\frac{\ }{\gamma}$ $=\gamma$ $=$ *L ^v* 2 1 − 2 *c* The Lorentz factor, γ , is 1 at rest and approaches infinity as the velocity approaches the speed of light: 10 $\overline{9}$ $_{\rm 8}$ $\overline{7}$ $\overline{6}$ $\overline{5}$ \overline{a} $\overline{3}$ \overline{c} $\overline{1}$ $\overline{0}$ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 \circ $\overline{1}$ velocity $c = 1$

Big Ideas Details Unit: Special Relativity This conclusion has significant consequences. For example, events that happen in *CP1 & honors* two different locations could be simultaneous in one reference frame, but occur at *(not AP®)*different times in another reference frame! Using arguments similar to those for length contraction, the equation for time dilation turns out to be: $\frac{\Delta t'}{\Delta t} = \gamma =$ 1 *t* $\Delta t' = \gamma \Delta t$ or $\frac{\Delta t}{\Delta t} = \gamma = \frac{1}{\sqrt{1-\gamma^2}}$ γ *^t ^v* 1 − 2 *c* where: $\Delta t'$ = time difference between two events in stationary reference frame Δ*t* = time difference between two events in moving reference frame *v* = velocity of moving reference frame *c* = velocity of light **Effect of Gravity on Time** Albert Einstein first postulated the idea that gravity slows down time in his paper on special relativity. This was confirmed experimentally in 1959. As with relativistic time dilation, gravitational time dilation relates a duration of time in the absence of gravity ("proper time") to a duration in a gravitational field. The equation for gravitational time dilation is: $t' = \Delta t$, $1 - \frac{2GM}{\Delta t}$ $\Delta t' = \Delta t \sqrt{1 - \frac{2 \epsilon}{m^2}}$ *rc* where: $\Delta t'$ = time difference between two events in stationary reference frame Δ*t* = time difference between two events in moving reference frame *G* = universal gravitational constant $(6.67 \times 10^{-11} \frac{N \cdot m^2}{r^2})$ $(6.67\times10^{-11}\frac{\text{N}\cdot\text{m}^2}{\text{L}^{-2}})$ kg *M* = mass of the object creating the gravitational field *r* = observer's distance (radius) from the center of the massive object *c* = velocity of light In 2014, a new atomic clock was built at the University of Colorado at Boulder, based on the vibration of a lattice of strontium atoms in a network of crisscrossing laser beams. The clock has been improved even since its invention, and is now accurate to better than one second per fifteen billion years (the approximate age of the universe). This clock is precise enough to measure differences in time caused by differences in the gravitational pull of the Earth near Earth surface. This clock would run measurably faster on a shelf than on the floor, because of the differences in time itself due to the Earth's gravitational field.

