Appendix: AP® Physics 1 Equation Tables

ADVANCED PLACEMENT PHYSICS 1 TABLE OF INFORMATION (2024)

CONSTANTS AND CONVERSION FACTORS				
Universal gravitational constant,	Acceleration due to g ravity at Earth's surface,			
$G = 6.67 \times 10^{-11} \mathrm{m}^3 / (\mathrm{kg} \cdot \mathrm{s}^2) = 6.67 \times 10^{-11} \mathrm{N} \cdot \mathrm{m}^2 / \mathrm{kg}^2$	$g = 9.8 \text{ m/s}^2$			
1 atmosphere of pressure,	Magnitude of the gravitational field strength at the			
$1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2 = 1.0 \times 10^5 \text{ Pa}$	Earth's surface, $g = 9.8$ N/kg			

PREFIXES				
Factor	Prefix	Symbol		
1012	tera	Т		
10 ⁹	giga	G		
106	mega	М		
10 ³	kilo	k		
10^{-2}	centi	с		
10^{-3}	milli	m		
10 ⁻⁶	micro	μ		
10 ⁻⁹	nano	n		
10^{-12}	pico	р		

UNIT SYMBOLS	hertz,	Hz	newton,	Ν
	joule,	J	pascal,	Pa
	kilogram, kg second,		s	
	meter,	m	watt,	W

_	VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
	θ	0°	30°	37°	45°	53°	60°	90°
	$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
	$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
	$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8

The following conventions are used in this exam.

- The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- Air resistance is assumed to be negligible unless otherwise stated.
- Springs and strings are assumed to be ideal unless otherwise stated.
- Fluids are assumed to be ideal, and pipes are assumed to be completely filled by fluid, unless otherwise stated.

GEOMETRY AND TRIGONOMETRY				
Rectangle $A = bh$	Rectangular Solid $V = \ell w h$		A = area b = base	Right Triangle $a^2 + b^2 = c^2$
Triangle $A = \frac{1}{2}bh$	Cylinder $V = \pi r^2 \ell$ $S = 2\pi r\ell + 2\pi r^2$	s	C = circumference h = height $\ell = \text{length}$ r = radius s = arc length S = surface area	
Circle $A = \pi r^2$	Sphere $V = \frac{4}{3}\pi r^3$		V = volume w = width	c a
$C = 2\pi r$ $s = r\theta$	$S = 4\pi r^2$		$\theta = angle$	$\frac{\theta}{b}$ 90°

Appendix: AP[®] Physics 1 Equation Tables

MECHANICS AND FLUIDS							
$v_x = v_{xo} + a_x t$		$\omega = \omega_o + at$	a = acceleration				
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	a = acceleration d = distance	$\theta = \theta_o + \omega_o t + \frac{1}{2}\alpha t^2$	A = amplitude or area d = distance				
$v_x^2 = v_{xo}^2 + 2a_x(x - x_o)$	E = energy	$\omega^2 = \omega_o^2 + 2\alpha(\theta - \theta_o)$	f = frequency				
	F = force	$v = r\omega$	F = force				
$\vec{x}_{cm} = \frac{\sum m_i \vec{x}_i}{\sum m_i}$	J = impulse		h = height				
Δm_i	k = spring constant	$a_T = r\alpha$	I = rotational inertia				
$\Sigma ec{F}$	K = kinetic energy	$\tau = r_{\perp}F = rF\sin\theta$	k = spring constant				
$\vec{a}_{sys} = \frac{\Sigma \vec{F}}{m_{sys}}$	m = mass p = momentum	_	K = kinetic energy $\ell = \text{length}$				
	P = power	$I = \sum m_i r_i^2$	L = angular momentum				
$\left F_{g}\right = G \frac{m_{1}m_{2}}{r^{2}}$	r = radius, distance,	$I' = I_{cm} + Md^2$	m = mass				
$\left \vec{F}_{f}\right \leq \left \mu\vec{F}_{n}\right $	or position	Σ -	M = mass				
	t = time	$\alpha_{sys} = \frac{\sum \tau}{I} = \frac{\tau_{net}}{I}$	P = pressure				
$\vec{F}_s = -k\Delta \vec{x}$	U = potential energy	I sys I sys	r = radius, distance, or				
$a_c = \frac{v^2}{2}$	v = velocity or speed W = work	$K = \frac{1}{2}I\omega^2$	position				
$u_c - r$	x = position	1 2100	t = time T = period				
$K = \frac{1}{2}mv^2$	y = height	$W = \tau \Delta \theta$	v = velocity or speed				
$W = F_{\parallel}d = Fd\cos\theta$	$\theta = angle$	$L = I\omega = rmv\sin\theta$	V = volume				
	μ = coefficient of friction	$L = 100 - 7mv \sin \theta$	W = work				
$\Delta K = \sum W_i = \sum F_{\parallel,i} d_i$		$\Delta L = \tau \Delta t$	x = position				
$U_G = -\frac{Gm_1m_2}{r_1}$		$\Delta x_{cm} = r \Delta \theta$	y = vertical position $\alpha =$ angular acceleration				
$C_G = -\frac{r}{r}$		$\Delta x_{cm} = r \Delta 0$	$\theta = $ angle				
$\Delta U_{g} = mg\Delta y$		$T = \frac{1}{f}$	$\rho = \text{density}$				
		5	$\tau = torque$				
$P_{avg} = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t}$		$T_s = 2\pi \sqrt{\frac{m}{k}}$	ω = angular speed				
$P_{inst} = F_{\parallel} v = F v \cos \theta$		$T_p = 2\pi \sqrt{\frac{\ell}{g}}$					
$\vec{p} = m\vec{v}$		$x = A\cos(2\pi ft)$					
. <u>An</u> Ai		$x = A\sin(2\pi ft)$					
$\vec{F}_{net} = \frac{\Delta \vec{p}}{\Delta t} = m \frac{\Delta \vec{v}}{\Delta t} = m \vec{a}$		m = m					
		$\rho = \frac{m}{V}$					
$\vec{J} = \vec{F}_{avg} \Delta t = \Delta \vec{p}$		$P = \frac{F_{\perp}}{A}$					
$\vec{v}_{cm} = \frac{\sum \vec{p}_i}{\sum m_i} = \frac{\sum m_i \vec{v}_i}{\sum m_i}$		$P = P_o + \rho g h$					
		$P_{gauge} = \rho g h$					
		$F_b = \rho V g$					
		$A_1 v_1 = A_2 v_2$					
		$P_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = P_2 +$	$-\rho g y_2 + \frac{1}{2}\rho v_2^2$				