Appendix: AP® Physics 1 Equation Tables

ADVANCED PLACEMENT PHYSICS 1 TABLE OF INFORMATION (2024)

CONSTANTS AND CONVERSION FACTORS

Universal gravitational constant, $G = 6.67 \times 10^{-11} \text{ m}^3 / (\text{kg} \cdot \text{s}^2) = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2 / \text{kg}^2$

1 atmosphere of pressure,

 $1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2 = 1.0 \times 10^5 \text{ Pa}$

Acceleration due to gravity at Earth's surface,

 $g = 9.8 \text{ m/s}^2$

Magnitude of the gravitational field strength at the Earth's surface, g = 9.8 N/kg

PREFIXES				
Factor	Prefix	Symbol		
10^{12}	tera	T		
10^{9}	giga	G		
10^{6}	mega	M		
10^{3}	kilo	k		
10^{-2}	centi	c		
10^{-3}	milli	m		
10^{-6}	micro	μ		
10^{-9}	nano	n		
10^{-12}	pico	p		

UNIT SYMBOLS	hertz,	Hz	newton,	N
	joule,	, J pascal,		Pa
	kilogram,	kg	second,	S
	meter,	m	watt,	W

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8

The following conventions are used in this exam.

- The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- Air resistance is assumed to be negligible unless otherwise stated.
- Springs and strings are assumed to be ideal unless otherwise stated.
- Fluids are assumed to be ideal, and pipes are assumed to be completely filled by fluid, unless otherwise stated.

GEOMETRY AND TRIGONOMETRY				
Rectangle	Rectangular Solid		A = area	Right Triangle
A = bh	$V = \ell w h$		b = base	$a^2 + b^2 = c^2$
			C = circumference	. , a
Triangle	Cylinder		h = height	$\sin\theta = \frac{a}{c}$
$A = \frac{1}{2}bh$	•	r	$\ell = length$	$\cos \theta = \frac{b}{a}$
2	$S = 2\pi r\ell + 2\pi r^2$		r = radius	c
		1	s = arc length	$\tan \theta = \frac{a}{1}$
		\	S = surface area	b
Circle	Sphere		V = volume	
$A = \pi r^2$	$V = \frac{4}{3}\pi r^3$	_	w = width	000 a
$C = 2\pi r$	$S = 4\pi r^2$		θ = angle	θ 90°
$s = r\theta$				U

MECHANICS AND FLUIDS

$$x = x_o + v_{xo}t + \frac{1}{2}a_x t^2$$

a = acceleration

$$d = distance$$

$$v_x^2 = v_{xo}^2 + 2a_x(x - x_o)$$

$$E = \text{energy}$$

$$\sum m_i \vec{x}_i$$

F =force

$$\vec{x}_{cm} = \frac{\sum m_i \vec{x}_i}{\sum m_i}$$

J = impulse

$$k =$$
spring constant $K =$ kinetic energy

$$\vec{a}_{sys} = \frac{\Sigma \vec{F}}{m_{sys}}$$

m = mass

$$p = momentum$$

$$|F_g| = G \frac{m_1 m_2}{r_1^2}$$

P = power

$$|F_g| = G \frac{1}{r^2}$$

r = radius, distance,

$$|\mu \vec{F}_{n}|$$

t = time

$$\vec{F}_{x} = -k\Delta \vec{x}$$

U = potential energy

 μ = coefficient of friction

or position

$$a_c = \frac{v^2}{}$$

v = velocity or speed W = work

x = position

$$K = \frac{1}{2}mv^2$$

y = height

$$W = F_{\parallel}d = Fd\cos\theta$$

 θ = angle

$$\Delta K = \sum W_i = \sum F_{\parallel i} d_i$$

$$U_G = -\frac{Gm_1m_2}{r}$$

$$\Delta U_{\sigma} = mg\Delta y$$

$$P_{avg} = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t}$$

$$P_{inst} = F_{\parallel} v = F v \cos \theta$$

$$\vec{p} = m\vec{v}$$

$$\vec{F}_{net} = \frac{\Delta \vec{p}}{\Delta t} = m \frac{\Delta \vec{v}}{\Delta t} = m \vec{a}$$

$$\vec{J} = \vec{F}_{avg} \Delta t = \Delta \vec{p}$$

$$\vec{v}_{cm} = \frac{\sum \vec{p}_i}{\sum m_i} = \frac{\sum m_i \vec{v}_i}{\sum m_i}$$

$$\omega = \omega_0 + at$$

a = acceleration

$$\theta = \theta_o + \omega_o t + \frac{1}{2}\alpha t^2$$

A =amplitude or area

$$\theta = \theta_o + \omega_o t + \frac{1}{2}\alpha t^2$$

d = distancef = frequency

$$\omega^2 = \omega_o^2 + 2\alpha(\theta - \theta_o)$$

F =force

$$v = r\omega$$

h = height

$$a_{T} = r\alpha$$

I =rotational inertia

$$\tau = r_{\perp}F = rF\sin\theta$$

k =spring constant

$$I = \sum_{i} m_i r_i^2$$

K = kinetic energy

 $\ell = length$

$$I' = I_{cm} + Md^2$$

L =angular momentum m = mass

$$\alpha_{sys} = \frac{\sum \tau}{I} = \frac{\tau_{net}}{I}$$

M = mass

$$\alpha_{sys} = \frac{\sum \tau}{I_{sys}} = \frac{\tau_{net}}{I_{sys}}$$

P = pressurer = radius, distance, or

$$K = \frac{1}{2}I\omega^2$$

position t = time

$$W = \tau \Delta \theta$$

T = period

v = velocity or speed

$$L = I\omega = rmv\sin\theta$$

V = volumeW = work

$$\Delta L = \tau \Delta t$$

x = position

y = vertical position

$$\Delta x_{cm} = r\Delta\theta$$

 α = angular acceleration

$$T = \frac{1}{a}$$

 θ = angle ρ = density

$$T_s = 2\pi \sqrt{\frac{m}{l}}$$

 τ = torque ω = angular speed

$$T_p = 2\pi \sqrt{\frac{\ell}{g}}$$

$$x = A\cos(2\pi ft)$$

$$x = A\sin(2\pi ft)$$

$$\rho = \frac{m}{V}$$

$$P = \frac{F_{\perp}}{4}$$

$$P = P_o + \rho g h$$

$$P_{gauge} = \rho g h$$

$$F_b = \rho V g$$

$$A_1 v_1 = A_2 v$$

$$P_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$$