Taking Notes on Math Problems

Unit: Introduction

Details

MA Curriculum Frameworks (2016): SP5

AP® Physics 2 Learning Objectives: SP5

Mastery Objective(s): (Students will be able to...)

• Take notes on math problems that both show and explain the steps.

Success Criteria:

- Notes show the order of the steps, from start to finish.
- A reason or explanation is indicated for each step.

Language Objectives:

• Be able to describe and explain the process of taking notes on a math problem.

Tier 2 Vocabulary: N/A

Notes:

If you were to copy down a math problem and look at it a few days or weeks later, chances are you'll recognize the problem, but you won't remember how you solved it.

Solving a math problem is a process. For notes to be useful, they need to describe the process as it happens, not just the final result.

If you want to take good notes on how to solve a problem, you need your notes to show what you did at each step.

Use this space for summary and/or additional notes:

	Taking Notes on Math Problems Page: 2	28
Big Ideas	Details Unit: Introductio	วท
	For example, consider the following physics problem:	
	A 25 kg cart is accelerated from rest to a velocity of $3.5 \frac{m}{s}$ over an	
	interval of 1.5 s. Find the net force applied to the cart.	
	The solved problem looks like this:	
<i>v</i> _o = 0	A 25 kg cart is accelerated from rest to a velocity of $3.5 \frac{m}{s}$ over an	
	$\frac{t}{1.5 \text{ s}}$. Find the <u>net force</u> applied to the cart.	
	$F_{net} = ma$ $v - v_o = at$ $F_{net} = 25a$ $3.5 - 0 = (a)(1.5)$ $F_{net} = (25)(5.5)$ $3.5 = 1.5a$	
	$F_{net} = 25a$ $3.5 - 0 = (a)(1.5)$	
	$F_{net} = (25)(5.5)$ $3.5 = 1.5a$	
	$F_{net} = 138.\overline{8} \text{ N}$ $a = 5.5 \frac{\text{m}}{\text{s}^2}$	
	This looks nice, and it's the right answer. But if you look at it now (or look back at it in a month), you won't know what you did. The quickest and easiest way to fix this is to number the steps and add a couple of words of description:	5
	$\frac{w}{25 \text{ kg}} \text{ cart is accelerated } \frac{v_o = 0}{\text{from rest}} \text{ to a velocity of } 3.5 \frac{w}{s} \text{ over}$	•
(1)	Label quantities t F_{net} an interval of 1.5 s.Find the net force applied to the cart.	
(2) Equation w	ith desired quantity $F_{net} = ma$ $v - v_o = at$ (3) Need another equation for $F_{net} = 25a$ $3.5 - 0 = (a)(1.5)$	r a
(5) Substitute	$F_{net} = (25)(5.5)$ $3.5 = 1.5a$	
	$F_{net} = 138.\overline{8}$ N $a = 5.5 \frac{m}{s^2}$ (4) Solve for a	
	(6) Apply unit	
	The math is exactly the same as above, but notice that the annotated problem includes two features:	
	• Steps are numbered, so you can see what order the steps were in.	
	 Each step has a short descriptive phrase so you know exactly what was done and why. 	9

Taking Notes on Math Problems

Use this space for summary and/or additional notes: