	Heat Transfer	Page: 45		
Big Ideas	Details	Unit: Thermal Physics (Heat)		
	Heat Transfer			
	Unit: Thermal Physics (Heat)			
	 NGSS Standards/MA Curriculum Frameworks (2016): HS-PS3-4a AP® Physics 2 Learning Objectives/Essential Knowledge (2024): 9.3.A, 9.3.A.1, 9.3.A.1.i, 9.3.A.1.ii, 9.3.A.2, 9.3.A.3, 15.4.A, 15.4.A.1, 15.4.A.2, 15.4.A.3, 15.4.A.3.ii, 15.4.A.3.iii, 15.4.A.3.iii Mastery Objective(s): (Students will be able to) Explain heat transfer by conduction, convection and radiation. Calculate heat transfer using Fourier's Law of Heat Conduction. 			
 Success Criteria: Descriptions & explanations account for observed behavior. 				
	 Algebra is correct and rounding to appropriate number of significant figure reasonable. 			
Language Objectives:				
	• Explain the mechanisms by which heat is transferred.			
	Tier 2 Vocabulary: conduction, radiation			
	Labs, Activities & Demonstrations:			
Radiometer & heat lamp.				
	Almond & cheese stick.			
	• Flammable soap bubbles.			
	• Drop of food coloring in water vs. ice water	er		
Notes:				
	Heat transfer is the flow of heat energy from on usually occurs through three distinct mechanisn convection.	e object to another. Heat transfer ns: conduction, radiation, and		
	<u>conduction</u> : transfer of heat through collisions of <u>direct contact</u> with each other. Conduction of momentum from the molecules of an obj transfer to the molecules of an object with a	of particles by objects that are <u>in</u> occurs when there is a net transfer ject with a higher temperature a lower temperature.		
	<u>thermal conductivity</u> (<i>k</i>): a measure of the amon substance can conduct in a specific amount measured in units of $\frac{J}{m \cdot s \cdot c}$ or $\frac{W}{m \cdot c}$.	<u>hermal conductivity</u> (<i>k</i>): a measure of the amount of heat that a given length of a substance can conduct in a specific amount of time. Thermal conductivity is measured in units of $\frac{J}{m \cdot s \cdot \circ c}$ or $\frac{W}{m \cdot \circ c}$.		

Heat Transfer

<u>conductor</u>: an object that allows heat to pass through itself easily; an object with high thermal conductivity.

<u>insulator</u>: an object that does not allow heat to pass through itself easily; a poor conductor of heat; an object with low thermal conductivity.

<u>radiation</u>: transfer of heat <u>through space</u> via electromagnetic waves (light, microwaves, *etc*.)

<u>convection</u>: transfer of heat <u>by motion of particles</u> that have a higher temperature exchanging places with particles that have a lower temperature. Convection usually occurs when air moves around a room.

Natural convection occurs when particles move because of differences in density. In a heated room, because cool air is more dense than warm air, the force of gravity is stronger on the cool air, and it is pulled harder toward the ground than the warm air. The cool air displaces the warm air, pushing it upwards out of the way.

In a room with a radiator, the radiator heats the air, which causes it to expand and be displaced upward by the cool air nearby. When the (less dense) warm air reaches the ceiling, it spreads out, and it continues to cool as it spreads. When the air reaches the opposite wall, it is forced downward toward the floor, across the floor, and back to the radiator.

<u>Forced convection</u> can be achieved by moving heated or cooled air using a fan. Examples of this include ceiling fans and convection ovens. If your radiator does not warm your room enough in winter, you can use a fan to speed up the process of convection. (Make sure the fan is moving the air in the same direction that would happen from natural convection. Otherwise, the fan will be fighting against physics!)

Big Ideas

Details

	Heat Transfer Page: 47			
Big Ideas	Details Unit: Thermal Physics (Heat)			
	Calculating Heat Transfer by Conduction			
	Heat transfer by conduction can be calculated using Fourier's Law of Heat			
	Conduction:			
	$P = \frac{Q}{t} = \pm kA \frac{\Delta T}{L}$			
	where:			
	P = power (W)			
	Q = heat transferred (J) T T			
	t = time (s)			
	$k = \text{coefficient of thermal conductivity}} \left(\frac{W}{m \cdot C}\right) \leftarrow L \rightarrow$			
	A = cross-sectional area (m ²)			
	ΔT = temperature difference (K or °C)			
	L = length(m)			
	The $+$ sign means that the value can be positive or negative, because the sign for 0			
	is chosen based on whether the heat transfers into $(+)$ or out of $(-)$ the system.			
	Note that for insulation (the kind you have in the walls and attic of your home), you want the lowest possible thermal conductivity—you don't want the insulation to conduct the heat from the inside of your house to the outside! Because most people think that bigger numbers are better, the industry has created a measure of the second sec			
	the effectiveness of insulation called the "R value". It is essentially the reciprocal of			
	$\frac{1}{L}$, which means lower conductivity and more thickness gives better insulation.			
	Sample Problem:			
	Q: A piece of brass is 5.0 mm (0.0050 m) thick and has a cross-sectional area of 0.010 m ² . If the temperature on one side of the metal is 65°C and the temperature on the other side is 25°C, how much heat will be conducted through the metal in 30. s? The coefficient of thermal conductivity for brass is $120 \frac{W}{m \cdot C}$.			
	A: $\frac{Q}{t} = kA \frac{\Delta T}{L}$			
	$\frac{Q}{30} = (120)(0.010) \left(\frac{65 - 25}{0.0050}\right) = 9600$			
	Q = 288000 J = 288 kJ			
	(Note that because the quantities of heat that we usually measure are large,			

Wien's Displacement Law

In 1893, German physicist Wilhelm Wien discovered that radiation from a blackbody occurs in the form of electromagnetic radiation, over a range of wavelengths. The wavelength at which the maximum energy is radiated decreases as the temperature increases:

The wavelength of maximum radiation is described by the equation:

$$\lambda_{max} = \frac{b}{T}$$

where:

 λ_{max} = wavelength of maximum radiated energy

b = Wien's displacement constant $= 2.897771955 \times 10^{-3} \text{m} \cdot \text{K}$

T = temperature (K)

Heat Transfer

Big Ideas	Details Unit: Thermal Physics (Heat)
honors	Wien's displacement law was superseded in 1900, when German physicist Max
(not AP [®])	Planck derived a more general equation, now called Planck's radiation law. This law
(gives an equation for the spectral energy density (energy per unit volume per unit
	frequency):
ł	$8\pi hv^3$ 1
	$u_{\nu}(\nu,T) = \frac{0.711\nu}{C^3} \cdot \frac{1}{(h_{\nu/\mu}T)}$
	$e^{(\gamma x_{B})} - 1$
i	where:
	$u_{\nu}(\nu,T) =$ spectral energy density (a function of wavelength & temperature)
İ	$h = Planck's constant = 6.62607015 \times 10^{-34} J \cdot s$
	$c = \text{speed of light in a vacuum} = 2.99792458 \frac{\text{m}}{\text{s}}$
	$k_{B} = \text{Boltzmann constant} = 1.380649 \times 10^{-23} \frac{\text{J}}{\text{K}}$
	T = temperature (K)
!	

		Heat Transfer	Page: 52			
Big Ideas	Details		Unit: Thermal Physics (Heat)			
	4.	(M) A glass window in a house has an area of	0.67 m ² and a thickness of			
	2.4 mm (2.4 \times 10 ⁻³ m). The temperature inside the house is 21 °C, ar					
		outside temperature is 0 °C.				
a. (M) How much heat is los due to conduction?		a. (M) How much heat is lost through the due to conduction?	e window in 1 hour (3600 s)			
		Use 1.0 W for the thermal conductivi	ty of the glass.			
		Answer: $-21\ 100\ 000\ J = -21\ 100\ kJ$				
		(negative because heat is <u>lost</u>	through the window)			
		b. (M – honors; A – AP®) How much hea	t is lost through the window in			
	1 hour (3600 s) due to radiation? (Assume the temperature of the					
		entire glass is 21 °C for this problem.)				
		Hint: Remember to convert the tempere	ature to Kelvin.			
		Answer: -940 000 J = -940 kJ				
		(negative because heat is <u>lost</u>	through the window)			
		a (NA honoway A AD®) Which mode of	f hast transfor (conduction us			
c. $(M - honors; A - AP^{e})$ Which mode of heat trans		r neat transfer (conduction vs.				
			Juilt of fleat loss!			
	1					