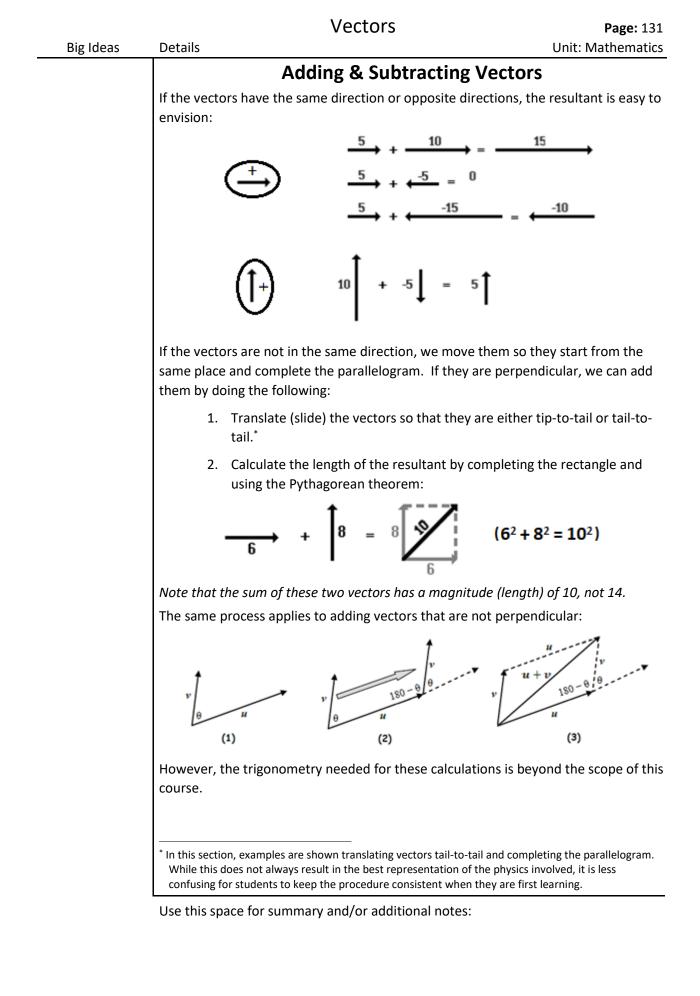
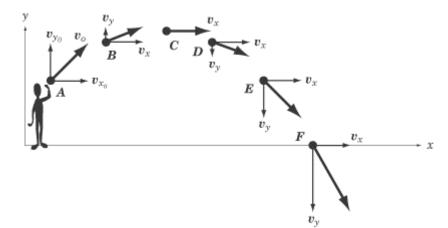
	Vectors	Page: 129			
Big Ideas	Details	Unit: Mathematics			
	Vectors				
	Unit: Mathematics				
	MA Curriculum Frameworks (2016): SP5				
	AP® Physics 2 Learning Objectives: SP 2.2				
	Mastery Objective(s): (Students will be able to)				
	 Identify the magnitude and direction of a vector. 				
	• Combine vectors graphically and calculate the magnitude and direction. Success Criteria:				
	 Magnitude is calculated correctly (Pythagorean theorem). 				
	 Direction is correct: angle (using trigonometry) or direct the right", "in the negative direction", etc.) 	tion (<i>e.g.,</i> "south", "to			
	Tier 2 Vocabulary: magnitude, direction				
	Language Objectives:				
	 Explain what a vector is and what its parts are. 				
	Tier 2 Vocabulary: vector, sign, direction				
	Notes:				
	vector: a quantity that has both a magnitude (value) and a dir	ection.			
	<i>E.g.,</i> if you are walking $1\frac{m}{s}$ to the north, the magnitude is is north.	$1\frac{m}{s}$ and the direction			
	<u>scalar</u> : a quantity that has a value but does not have a direction you think of as a "regular" number, including its unit.)	on. (A scalar is what			

<u>magnitude</u>: the scalar part of a vector (*i.e.*, the number and its units, but without the direction). If you have a force of 25 N to the east, the magnitude of the force is 25 N.


The mathematical operation of taking the magnitude of a vector is represented by two double vertical bars (like double absolute value bars) around the vector. For example, if \vec{F} is 25 N to the east, then $\|\vec{F}\| = 25$ N. However, to make typesetting easier, it is common to use regular absolute value bars instead, *e.g.*, $|\vec{F}| = 25$ N.

<u>resultant</u>: a vector that is the result of a mathematical operation (such as the addition of two vectors).

Use this space for summary and/or additional notes:


		/ectors	Page: 130
Big Ideas	Details		Unit: Mathematics
	Variables that represent vectors are traditionally typeset in bold Italics . Vector variables may also optionally have an arrow above the letter: J, \vec{F}, v Variables that represent scalars are traditionally typeset in <i>plain Italics</i> : V, t, λ Note that a variable that represents only the magnitude of a vector quantity is generally typeset as if it were a scalar: For example, suppose \vec{F} is a vector representing a force of 25 N to the east. (Notice that the vector includes the magnitude or amount and the direction.) The magnitude would be 25 N, and would be represented by the variable <i>F</i> . Vectors are represented graphically using arrows. The length of the arrow represents the magnitude of the vector, and the direction of the arrow represents the direction of the vector:		
	$\xrightarrow{10}$	< 15	7
	magnitude 10	magnitude 15	magnitude 7
	direction: "to the right", 0°	direction: "to the left", +180°	direction: "up", +90°
	Use this space for summany ar	ad/or additional notas:	

Use this space for summary and/or additional notes:

Vectors

One type of physics problem that commonly uses vectors is two-dimensional projectile motion. If the motion of the projectile is represented by a vector, \vec{v} , at angle θ , the vector can be represented as the sum of a horizontal vector \vec{v}_x and a vertical vector \vec{v}_y . This is useful because the horizontal vector \vec{v}_x gives us the component (portion) of the vector in the *x*-direction, and the vertical vector \vec{v}_y gives us the component of the vector in the *y*-direction.

Notice that \vec{v}_x remains constant, but \vec{v}_y changes (because of the effects of gravity).

Because perpendicular vectors do not affect each other, we can apply equations to the two directions separately.

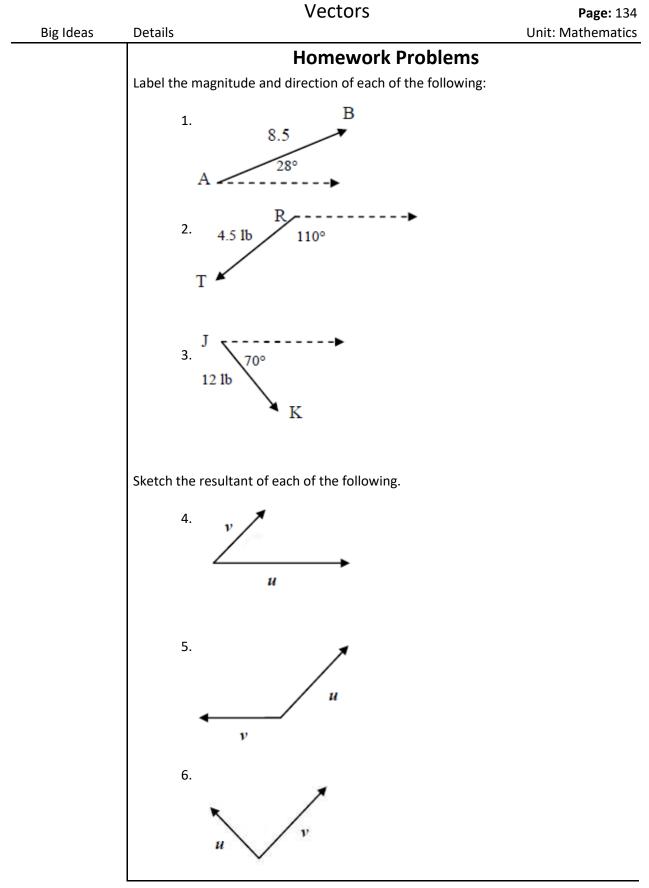
As you saw in projectile motion (which you learned about in physics 1), we use the equation $\vec{d} = \vec{v}_o t + \frac{1}{2}\vec{a}t^2$, applying it separately in the *x*- and *y*-directions. This gives us two equations.

In the horizontal (x)-direction:

$$\vec{\boldsymbol{d}}_{x} = \vec{\boldsymbol{v}}_{o,x}t + \frac{1}{2}\vec{\boldsymbol{a}}_{x}^{0}t^{2}$$
$$\vec{\boldsymbol{d}}_{x} = \vec{\boldsymbol{v}}_{x}t$$

In the vertical (y)-direction:

$$\vec{\boldsymbol{d}}_{y} = \vec{\boldsymbol{v}}_{o,y}t + \frac{1}{2}\vec{\boldsymbol{a}}_{y}t^{2}$$
$$\vec{\boldsymbol{d}}_{y} = \vec{\boldsymbol{v}}_{o,y}t + \frac{1}{2}\vec{\boldsymbol{g}}t^{2}$$


Use this space for summary and/or additional notes:

Big Ideas

Details

	Vectors	Page: 133	
Big Ideas	Details	Unit: Mathematics	
	Note that each of the vector quantities (\vec{d} , \vec{v}_o and \vec{a}) has independent x- and y-		
	components. For example, $\vec{v}_{o,x}$ (the component of the initial velocity in the <i>x</i> -		
	direction) is independent of $\vec{v}_{o,y}$ (the component of the initial velocity in the x-		
	direction). This means we treat them as completely separate variables, and we can solve for one without affecting the other.		

Use this space for summary and/or additional notes:

Use this space for summary and/or additional notes:

Big Ideas	Details	Unit: Mathematics
	Consider the following vectors $\vec{A} \otimes \vec{B}$.	1
	Vector \vec{A} has a magnitude of 9 and its direction is the positive horizontal direction (to the right).	B = 12
	7. $\vec{A} - \vec{B}$ Sketch the resultant of $\vec{A} + \vec{B}$, and determine direction.	e its magnitude and
	Ω . Chotch the results at af \vec{A} , \vec{B} (which is the same as	1 (0) and
	 Sketch the resultant of \$\vec{A} - \vec{B}\$ (which is the same as determine its magnitude and direction. 	A+(-B) , and

Use this space for summary and/or additional notes: