Big Ideas	Details Unit: Thermal Physics (Heat)			
honors (not AP®)	Thermal Expansion			
	Unit: Thermal Physics (Heat)			
	NGSS Standards/MA Curriculum Frameworks (2016): N/A			
l	AP [®] Physics 2 Learning Objectives/Essential Knowledge (2024): N/A			
	Mastery Objective(s): (Students will be able to)			
	 Calculate changes in length & volume for solids, liquids and gases that are undergoing thermal expansion or contraction. 			
	Success Criteria:			
	• Variables are correctly identified and substituted correctly into the correct equations.			
	 Algebra is correct and rounding to appropriate number of significant figures is reasonable. 			
	Language Objectives:			
i	• Explain what the heat is used for in each step of a heating curve.			
	Tier 2 Vocabulary: expand, contract			
	Labs, Activities & Demonstrations:			
	 Balloon with string & heat gun. 			
	• Brass ball & ring.			
	• Bi-metal strip.			
	Notes:			
	expand: to become larger			
	<u>contract</u> : to become smaller			
	thermal expansion: an increase in the length and/or volume of an object caused by a change in temperature.			
	When a substance is heated, the particles it is made of move farther and faster. This causes the particles to move farther apart, which causes the substance to expand.			
	Solids tend to keep their shape when they expand. (Liquids and gases do not have a definite shape to begin with.)			
	A few materials are known to contract with increasing temperature over specific temperature ranges. One well-known example is liquid water, which contracts as it heats from 0 °C to 4 °C. (Water expands as the temperature increases above 4 °C.)			

Big Ideas	Details Unit: Thermal Physics (H						
honors	ors Thermal Expansion of Solids and Liqu					ds	
(not AP®)	Thermal expansion is quantified in solids and liquids by defining a coëfficient of						
	thermal expansion. The changes in length and volume are given by the equation:						
	Length: $\Delta L = \alpha L_i \Delta T$						
	Volume: $\Delta V = \beta V_i \Delta T$						
	where:						
	$\Delta L = chang$	ΔL = change in length (m)					
1	$L_i = initial le$	ength (m)					
İ	α = linear coëfficient of thermal expansion (°C ⁻¹ or K ⁻¹)						
	ΔV = chang	ge in volume	(m³)				
	$V_i = initial v$	volume (m ³)			-1 14-1)		
	β = volume	tric coefficie	ent of thermal	expansion (°C	- or K -)		
	$\Delta T = temperature$	erature chan	ge (°C or K)				
Values of α and β at 20°C for some solids and liquids:							
	Substance	α(°C ⁻¹)	β (°C ⁻¹)	Substance	α(°C ⁻¹)	β (°C ⁻¹)	
	aluminum	2.3×10 ⁻⁵	6.9×10^{-5}	gold	1.4×10^{-5}	4.2×10 ⁻⁵	
	copper	1.7×10^{-5}	5.1×10 ⁻⁵	iron	1.18×10^{-5}	3.33×10 ⁻⁵	
	brass	1.9×10^{-5}	5.6×10^{-5}	lead	2.9×10^{-5}	8.7×10^{-5}	
	diamond	1×10^{-6}	3×10 ⁻⁶	mercury	6.1×10^{-5}	1.82×10^{-4}	
ļ	ethanol		7.5×10 ⁻⁴	silver	1.8×10 ⁻⁵	5.4×10^{-5}	
	glass	8.5×10^{-6}	2.55×10^{-6}	water (liq.)	6.9×10^{-5}	2.07×10 ⁻⁴	
		·		-	·		
ļ							
į							

Page: 79 Unit: Thermal Physics (Heat)

honors (not AP*) $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Big Ideas	Details	Unit: Thermal Physics (Heat)	
A: For mercury, $\beta = 1.82 \times 10^{-4} \circ C^{-1}$. $\Delta V = \beta V_i \Delta T$ $\Delta V = (1.82 \times 10^{-4})(0.22)(25)$ $\Delta V = 0.00091 \text{ cm}^3$ If the distance from the 25 °C to the 50 °C mark is about 3.0 cm, we could use this information to figure out the bore (diameter of the column of mercury) of the thermometer: $V = \pi r^2 h$ $0.00091 = (3.14)r^2 (3.0)$ $r^2 = \frac{0.00091}{(3.14)(3.0)} = 9.66 \times 10^{-5}$ $r = \sqrt{9.66 \times 10^{-5}} = 0.0098 \text{ cm}$ The bore is the diameter, which is twice the radius, so the bore of the thermometer is (2)(0.0098) = 0.0197 cm, which is about 0.20 mm.	honors (not AP®)	Q: A typical mercury thermor mercury. Find the change	neter contains about 0.22 cm ³ (about 3.0 g) of in volume of the mercury in a thermometer when it is	
$\Delta V = \beta V_{\Delta} T$ $\Delta V = (1.82 \times 10^{-4})(0.22)(25)$ $\Delta V = 0.000 91 \text{cm}^3$ If the distance from the 25 °C to the 50 °C mark is about 3.0 cm, we could use this information to figure out the bore (diameter of the column of mercury) of the thermometer: $V = \pi r^2 h$ $0.000 91 = (3.14)r^2 (3.0)$ $r^2 = \frac{0.000 91}{(3.14)(3.0)} = 9.66 \times 10^{-5}$ $r = \sqrt{9.66 \times 10^{-5}} = 0.0098 \text{cm}$ The bore is the diameter, which is twice the radius, so the bore of the thermometer is (2)(0.0098) = 0.0197 \text{cm}, which is about 0.20 mm.		heated from 25 °C to 50. °C. A: For mercury, $\beta = 1.82 \times 10^{-4} \text{ °C}^{-1}$		
$\Delta V = D^{1} P_{1} \Delta V$ $\Delta V = (1.82 \times 10^{-4})(0.22)(25)$ $\Delta V = 0.00091 \text{ cm}^{3}$ If the distance from the 25 °C to the 50 °C mark is about 3.0 cm, we could use this information to figure out the bore (diameter of the column of mercury) of the thermometer: $V = \pi r^{2}h$ $0.00091 = (3.14)r^{2}(3.0)$ $r^{2} = \frac{0.00091}{(3.14)(3.0)} = 9.66 \times 10^{-5}$ $r = \sqrt{9.66 \times 10^{-5}} = 0.0098 \text{ cm}$ The bore is the diameter, which is twice the radius, so the bore of the thermometer is (2)(0.0098) = 0.0197 cm, which is about 0.20 mm.			$\Delta V = B V \Delta T$	
$\Delta V = (1.62 \times 10^{-1})(0.22)(23)$ $\Delta V = 0.00091 \text{ cm}^{3}$ If the distance from the 25 °C to the 50 °C mark is about 3.0 cm, we could use this information to figure out the bore (diameter of the column of mercury) of the thermometer: $V = \pi r^{2} h$ $0.00091 = (3.14)r^{2}(3.0)$ $r^{2} = \frac{0.00091}{(3.14)(3.0)} = 9.66 \times 10^{-5}$ $r = \sqrt{9.66 \times 10^{-5}} = 0.0098 \text{ cm}$ The bore is the diameter, which is twice the radius, so the bore of the thermometer is (2)(0.0098) = 0.0197 cm, which is about 0.20 mm.	İ		$\Delta V = \int V_i \Delta T$	
If the distance from the 25 °C to the 50 °C mark is about 3.0 cm, we could use this information to figure out the bore (diameter of the column of mercury) of the thermometer: $V = \pi r^2 h$ $0.000 91 = (3.14)r^2(3.0)$ $r^2 = \frac{0.00091}{(3.14)(3.0)} = 9.66 \times 10^{-5}$ $r = \sqrt{9.66 \times 10^{-5}} = 0.0098 \text{ cm}$ The bore is the diameter, which is twice the radius, so the bore of the thermometer is (2)(0.0098) = 0.0197 cm, which is about 0.20 mm.			$\Delta V = (1.02 \times 10^{-3})(0.22)(23)$ $\Delta V = 0.00091 \text{ cm}^3$	
$V = \pi r^2 h$ 0.000 91 = (3.14)r ² (3.0) $r^2 = \frac{0.000 91}{(3.14)(3.0)} = 9.66 \times 10^{-5}$ $r = \sqrt{9.66 \times 10^{-5}} = 0.0098 \text{ cm}$ The bore is the diameter, which is twice the radius, so the bore of the thermometer is (2)(0.0098) = 0.0197 cm, which is about 0.20 mm.		If the distance from the 25 this information to figure o the thermometer:	5°C to the 50 °C mark is about 3.0 cm, we could use out the bore (diameter of the column of mercury) of	
$0.000 91 = (3.14)r^{2}(3.0)$ $r^{2} = \frac{0.000 91}{(3.14)(3.0)} = 9.66 \times 10^{-5}$ $r = \sqrt{9.66 \times 10^{-5}} = 0.0098 \text{ cm}$ The bore is the diameter, which is twice the radius, so the bore of the thermometer is (2)(0.0098) = 0.0197 cm, which is about 0.20 mm.			$V = \pi r^2 h$	
$r^{2} = \frac{0.000 91}{(3.14)(3.0)} = 9.66 \times 10^{-5}$ $r = \sqrt{9.66 \times 10^{-5}} = 0.0098 \text{cm}$ The bore is the diameter, which is twice the radius, so the bore of the thermometer is (2)(0.0098) = 0.0197 \text{cm}, which is about 0.20 mm.		0.00	$0091 = (3.14)r^2(3.0)$	
$r = \sqrt{9.66 \times 10^{-5}} = 0.0098$ cm The bore is the diameter, which is twice the radius, so the bore of the thermometer is (2)(0.0098) = 0.0197 cm, which is about 0.20 mm.			$r^2 = \frac{0.00091}{(3.14)(3.0)} = 9.66 \times 10^{-5}$	
The bore is the diameter, which is twice the radius, so the bore of the thermometer is (2)(0.0098) = 0.0197 cm, which is about 0.20 mm.			$r = \sqrt{9.66 \times 10^{-5}} = 0.0098 \text{ cm}$	
		The bore is the diameter, with the thermometer is (2)(0.0098	which is twice the radius, so the bore of the B) = 0.0197 cm, which is about 0.20 mm.	

Big Ideas	Details	Unit: Thermal Physics (Heat)			
honors		Homework Problems			
(not AP®)	You will nee	ed to look up coëfficients of thermal expansion in <i>Table K. Thermal</i>			
	Properties c	<i>T Selected Materials</i> on page 473 of your Physics Reference Tables.			
	1. (S)	A brass rod is 27.50 cm long at 25 °C. How long would the rod be if it			
	wer				
	Ans	wer: 27.88 cm			
	2. (M)	A steel bridge is 625 m long when the temperature is 0 °C.			
		a. If the bridge did not have any expansion joints, how much longer would the bridge be on a hot summer day when the temperature is			
		35 °C?			
		(Use the linear coëfficient of expansion for iron.)			
		Answer: 0.258 m			
		b. Why do bridges need expansion joints?			
	3. (M)	A 15.00 cm long bimetal strip is aluminum on one side and copper on			
	the	other. If the two metals are the same length at 20.0 °C, how long will he at 800 °C?			
	Cac				
	Ans	wers: aluminum: 15.269 cm; copper: 15.199 cm			
	4. (S)	(S) A glass volumetric flask is filled with water exactly to the 250.00 mL line			
	at 5	at 50. °C. What volume will the water occupy after it cools down to 20. °C?			
	Ans	wer: 248.45 mL			
:		-			

		Thermal Expansion	Page: 84
Big Ideas	Details		Unit: Thermal Physics (Heat)
honors		Homework Proble	ms
honors (not AP®)	1.	(S) A sample of argon gas was cooled, and its 250. mL. If its final temperature was –45.0 °C, temperature?	volume went from 380. mL to what was its original
	2.	Answer: 347 K or 74 °C (M) A balloon contains 250. mL of air at 50 °C cooled to 20.0 °C, what will be the new volum	. If the air in the balloon is e of the air?
Į.		Answer: 226.8mL	