Logarithms

Unit: Mathematics

MA Curriculum Frameworks (2016): N/A

Old MA Curriculum Frameworks (2006): N/A

AP® Physics 2 Learning Objectives: N/A

Knowledge/Understanding:

• What logarithms represent and an intuitive understanding of logarithmic quantities.

Skills:

Details

Big Ideas

• Use logarithms to solve for a variable in an exponent.

Language Objectives:

• Understand the use of the terms "exponential" and "logarithm" and understand the vernacular use of "log" (otherwise a Tier 1 word) as an abbreviation for "logarithm".

Tier 2 Vocabulary: function

Notes:

The logarithm may well be the least well-understood function encountered in high school mathematics.

The simplest logarithm to understand is the base-ten logarithm. You can think of the (base-ten) logarithm of a number as the number of zeroes after the number.

x	log10(x)	
100 000	10 ⁵	5
10 000	10 ⁴	4
1 000	10 ³	3
100	10 ²	2
10	10 ¹	1
1	10 ⁰	0
0.1	10 ⁻¹	-1
0.01	10-2	-2
0.001	10-3	-3
0.000 1	10 ⁻⁴	-3 -4 -5
0.000 01	10 ⁻⁵	-5

As you can see from the above table, the logarithm of a number turns a set of numbers that vary exponentially (powers of ten) into a set that vary linearly.

Use this space for summary and/or additional notes:

Logarithms

		LO	garithm	S		Page: 145		
Big Ideas	Details			Uni	t: Mathematics			
	You can get a vis	You can get a visual sense of the logarithm function from the logarithmic number						
	line below:							
	3	579	3	0 50 70 90	300	500 700 900		
		+ + + + + + + + + + + + + + + + + + + +			+ +	+ + + + + + + + + + + + + + + + + + + +		
	1 2	4 6 8 10	20	40 60 80 100	200	400 600 800 1000		
	Notice that the <i>c</i>	listance from	1 to 10 is th	he same as the <i>d</i>	istance from	10 to 100 and		
	from 100 to 100							
	is the logarithm							
	0							
		v	$\log (x)$	distance from b	peginning			
		X	$\log_{10}(x)$	of number	line			
		10 ⁰	0	0				
		10 ^{0.5} ≈ 3.16	0.5	½ cycle	5			
		10 ¹ = 10	1	1 cycle	2			
		$10^2 = 100$	2	2 cycle	S			
		$10^3 = 1000$	3	3 cycle	S			
	powers of ten. T numbers get larg The most useful into the linear pa	ger. mathematical	property o					
	$\log_{10}(10^3) = 3\log_{10}(10) = (3)(1) = 3$							
	In fact, the logarithm function works the same way for any base, not just 10:							
	$\log_2(2^7) = 7 \log_2(2) = (7)(1) = 7$							
	(In this case, the equation is:	n this case, the word "base" means the base of the exponent.) The general quation is:						
		$\log_x(a^b) = b \log_x(a)$						
	This is a powerful tool in solving for the exponent in an equation. This is, in fact, precisely the purpose of using logarithms in most mathematical equations.							
	Use this space fo	r summary an	id/or addit	ional notes:				

Big Ideas Details Sample problem: Q: Solve $3^x = 15$ for x. A: Take the logarithm (any base) of both sides. (Note that writing "log" without supplying a base implies that the base is 10.) $\log(3^{x}) = \log(15)$ $x \log(3) = \log(15)$ (x)(0.477) = 1.176 $x = \frac{1.176}{0.477} = 2.465$ This is the correct answer, because $3^{2.465} = 15$ **Logarithmic Graphs** A powerful tool that follows from this is using 50 logarithmic graph paper to solve equations. 40 If you plot an exponential function on 30 semilogarithmic ("semi-log") graph paper (meaning graph paper that has a logarithmic scale on one axis but not the other), you get 20 a straight line. The graph at the right is the function $y = 2^x$. 10 Notice where the following points appear on 8 the graph: 7 6 Domain Range 0 1 1 2 2 4 3 8 4 16 5 32 Notice also that you can use the graph to find intermediate values. For example, at x = 2.6, the graph shows that y = 6.06. 3

Use this space for summary and/or additional notes:

Big Ideas	Logarithms Page: 147 Details Unit: Mathematics					
Dig lucas	Natural Logarithms					
	The natural logarithm comes from calculus—it is the solution to the problem:					
	$\int \frac{1}{x} dx = \log_e(x)$					
	where the base of this logarithm, " <i>e</i> ," is a constant (sometimes called "Euler's number") that is an irrational number equal to approximately 2.71828 18284 59045					
	The natural logarithm is denoted "In", so we would actually write:					
	$\int \frac{1}{x} dx = \ln(x)$					
	The number "e" is often called the exponential function. In an algebra-based physics class, the exponential function appears in some equations whose derivations come from calculus, notably some of the equations relating to resistor-capacitor (RC) circuits.					
	Finally, just as:					
	$\log(10^{x}) = x$ and $10^{\log(x)} = x$					
	it is similarly true that:					
	$\ln(e^x) = x$ and $e^{\ln(x)} = x$					
	Use this space for summary and/or additional notes:					

Use this space for summary and/or additional notes: