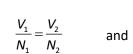
	Gas Laws	Page: 94
leas	Details	Unit: Thermodynamics
	Gas Laws	
	Unit: Thermodynamics	
	NGSS Standards/MA Curriculum Frameworks (2016): HS-F	PS2-8(MA)
	AP [®] Physics 2 Learning Objectives/Essential Knowledge (2 9.2.A.2, 9.2.A.3, 9.2.A.4	024): 9.2.A, 9.2.A.1,
	Mastery Objective(s): (Students will be able to)	
	 Qualitatively describe the relationship between any to number of particles, temperature, pressure, and volur Molecular Theory (KMT). 	•
	 Quantitatively determine the number of particles, ten volume in a before & after problem in which one or n is changing. 	
	Success Criteria:	
	 Descriptions relate behavior at the molecular level to macroscopic level. 	behavior at the
	 Solutions have the correct quantities substituted for t 	the correct variables.
	 Chosen value of the gas constant has the same units a the problem. 	as the other quantities in
	 Algebra and rounding to appropriate number of significant significant strength s	ficant figures is correct.
	Language Objectives:	
	 Identify each quantity based on its units and assign the 	ne correct variable to it.
	 Understand and correctly use the terms "pressure," " "temperature," and "ideal gas." 	volume," and
	• Explain the placement of each quantity in the ideal ga	as law.
	Tier 2 Vocabulary: ideal, law	

		Gas Laws	Page: 95
Big Ideas	Details		Unit: Thermodynamics
	Labs, Activities &	& Demonstrations:	
	 Vacuum pum 	p (pressure & volume) with:	
	\circ balloon (air	vs. water)	
	\circ shaving cre	am	
	Absolute zero	o apparatus (pressure & temperatu	re)
	Balloon with	tape (temperature & volume)	
	 Can crush (pr 	essure, volume & temperature)	
	Notes:		
	kinetic-molecul and move freel collide, the coll	t behaves as if each molecule acts in ar theory. Specifically, this means y in straight lines at constant speed isions are perfectly elastic, which m energy or momentum lost. (See the g on page 92.)	the molecules are far apart, ds. When the molecules neans they bounce off each

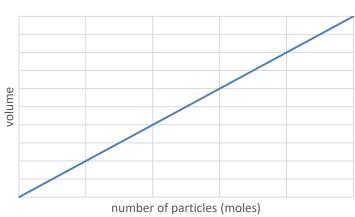

Details

Avogadro's Principle

In 1811, Italian physicist Amedeo Avogadro (whose full name was Lorenzo Romano Amedeo Carlo Avogadro di Quaregna e di Cerreto) published the principle that equal volumes of an ideal gas at the same temperature and pressure must contain equal numbers of particles.

Demonstration	Outcome	What the molecules are doing	Conclusion
put more (moles of) air into a balloon $n \uparrow$	the volume of the balloon got larger V↑	crowding each other → pushing each other farther away	<i>n</i> and <i>V</i> are directly proportional. $\frac{V}{n}$ = constant

If the pressure and temperature are constant, then for an ideal gas:




```
\frac{V_1}{n_1} = \frac{V_2}{n_2}
```

(particles)

(moles)

Although Avogadro's principle was originally stated in terms of particles (N) of gas, it is almost always more convenient to work with moles (n).

* Avogadro's principle is usually stated $\frac{n_1}{V_1} = \frac{n_2}{V_2}$. I have inverted it in these notes so that the quantities

in the numerator and denominator are the same as the quantities in the numerator and denominator of the combined gas law.


(Note that by convention, gas laws use subscripts "1" and "2" instead of "o" for initial no subscript for final.)

Boyle's Law

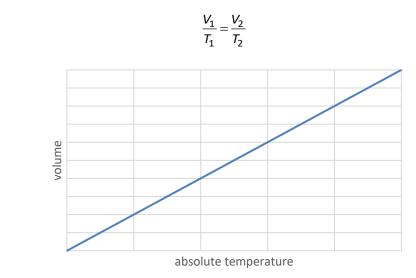
In 1662, British physicist and chemist Robert Boyle published his findings that the pressure and volume of a gas were inversely proportional.

Demonstration	Outcome	What the molecules are doing	Conclusion
decrease pressure by putting a balloon in a vacuum chamber $P\downarrow$	the volume of the air inside the balloon increased V↑	expanding the space = more surface area → less force per unit area (less pressure)	P and V are inversely proportional. PV = constant

Therefore, if the temperature and the number of particles of gas are constant, then for an ideal gas:

Big Ideas

Details

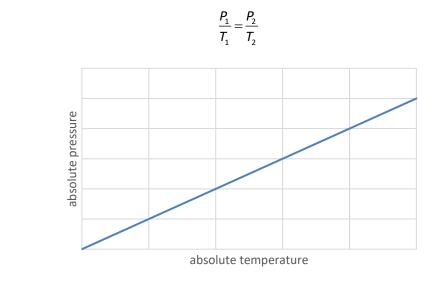

Details

Charles' Law

In the 1780s, French physicist Jacques Charles discovered that the volume and temperature of a gas were directly proportional.

Demonstration	Outcome	What the molecules are doing	Conclusion
place masking tape around balloon and heat with hot air gun T↑	the volume of the air got larger and expanded the balloon except where the tape pinched it $V\uparrow$	moving more slowly → pushing each other less far away	V and T are directly proportional. $\frac{V}{T} = \text{constant}$

If pressure and the number of particles are constant, then for an ideal gas:


Note that if a plot of temperature *vs.* volume is extrapolated to a volume of zero, the *x*-intercept will be absolute zero.

Gay-Lussac's Law

In 1702, French physicist Guillaume Amontons discovered that there is a relationship between the pressure and temperature of a gas. However, precise thermometers were not invented until after Amontons' discovery so it wasn't until 1808, more than a century later, that French chemist Joseph Louis Gay-Lussac confirmed this law mathematically. The pressure law is most often attributed to Gay-Lussac, though some texts refer to it as Amontons' Law.

Demonstration	Outcome	What the molecules are doing	Conclusion
increase temperature by heating a metal sphere full of air τ \uparrow	the pressure of the air increased P^{\uparrow}	moving faster → colliding with more force	<i>P</i> and <i>T</i> are directly proportional. $\frac{P}{T} = \text{constant}$

If volume and the number of particles are constant, then for an ideal gas:

Note that at absolute zero, gas molecules do not exert any pressure on the walls of the container.

Big Ideas	Gas Laws	Page: 10 Unit: Thermodynamic
-D 10003	The Combined Gas La	
	We can combine each of the above principles. When we the numerator and n (or N) and T in the denominator for following relationship for an ideal gas:	do this (keeping P and V in
	$\frac{P_1 V_1}{n_1 T_1} = \frac{P_2 V_2}{n_2 T_2} = \text{constant} \qquad \frac{P_1 V_1}{N_1 T_1} = \frac{P_2 V_2}{N_2 T_2}$	= = constant
	using moles using p	particles
	Note, however, that in most situations where we want to gas, the number of moles or particles remains constant. $N_1 = N_2$, and we can cancel it from the equation. This give	This means $n_1 = n_2$ or
	$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$	
	The above equation is called the "combined gas law", wh "before/after" problems involving ideal gases.	ich is used to solve most
	When using the combined gas law, any quantity that is no cancelled out of the equation. (If a quantity is not mention can assume that it is constant and may be cancelled.)	
	For example, suppose a problem doesn't mention anythin That means T is constant and you can cancel it. When yo of the combined gas law, you get:	
	$\frac{P_1V_1}{\mathcal{I}_1} = \frac{P_2V_2}{\mathcal{I}_2}$ which simplifies to $P_1V_1 = P_2V_2$	(Boyle's Law)
	Solving Problems Using the Comb	oined Gas Law
	You can use this method to solve any "before/after" gas	aw problem:
	1. Determine which variables you have	
	2. Determine which values are <i>initial</i> (#1) vs. <i>final</i> (#	#2).
	 Start with the combined gas law and cancel any w not changing or omitted (assumed not to be char 	
	 Substitute your numbers into the resulting equat all initial and final quantities have the same units temperatures <u>must</u> be in Kelvin!) 	•

		Gas Lav	vs Page: 10
Big Ideas	Detail	S	Unit: Thermodynamic
	use S.	I. units when solving problems u tant to <i>use the same units for th</i>	oth sides of the equation, it is not necessary to sing the combined gas law. It is, however, he same quantity on both sides of the
	Sam	ole problem:	
	Q: A	-	nd a pressure of 1.5 bar. If the gas is heated re be?
	A: 1.	Find which variables we have.	
		We have two temperatures (2 the new pressure that we're lo	5 °C and 35 °C), and two pressures (1.5 bar an poking for).
	2.		the gas ("heated"). Anything that was true n is time "1", and anything that is true about e "2".
		<u>Time 1 ("before")</u> :	<u>Time 2 ("after")</u> :
		<i>P</i> ₁ = 1.5 bar	$P_2 = P_2$
		<i>T</i> ₁ = 25 °C + 273 = 298 K	<i>T</i> ₂ = 35 °C + 273 = 308 K
	3.	mention it:	ancel volume (<i>V</i>), because the problem doesn
		$\frac{T_1 T_1}{T_1} = \frac{T_2 T_2}{T_2}$ which give	is us $\frac{P_1}{T_1} = \frac{P_2}{T_2}$ (Gay-Lussac's Law)
	4.	Plug in our values and solve:	
		$\frac{1.5\mathrm{bar}}{298\mathrm{K}} = \frac{1}{3}$	$\frac{P_2}{308 \mathrm{K}} \longrightarrow P_2 = 1.55 \mathrm{bar}$

	Gas Laws Page: 10			
Big Ideas	Details	Unit: Thermodynamics		
	Homework Problems Solve these problems using one of the gas laws in this section. Remember to convert temperatures to Kelvin!			
	 (M) A sample of oxygen gas occupies a v 740. torr. What volume will it occupy at 	-		
	Answer: 231.25 mL 2. (M) A sample of O_2 is at a temperature of	of 40.0 °C and occupies a volume of		
	2.30 L. To what temperature should it be	-		
	Answer: 612 °C			
	3. (S) H ₂ gas was cooled from 150. °C to 50. What was its original pressure?	°C. Its new pressure is 750 torr.		
	Answer: 980 torr			
	 (S) A 2.00 L container of N₂ had a pressu be necessary to decrease the pressure to 			
	(Hint: notice that the pressures are in di <u>f</u> one of them so that both pressures are in			
	Answer: 6.62 L			

		Gas Laws	Page: 103
Big Ideas	Details		Unit: Thermodynamics
		ample of air has a volume of 60.0 mL at S.T.P have at 55.0 °C and 745 torr?	. What volume will the
	Answe	r: 73.5 mL	
	1 atm.	gas is enclosed in a tightly stoppered 500. m The flask, which is rated for a maximum pres to 680. °C. Will the flask explode?	
	Answe	r: $P_2 = 3.25$ atm. Yes, the flask will explode.	
	tempe	a diver's 10. L air tank is filled to a pressure or rature of 32.0 °C. When the diver is breathing cemperature is 8.0 °C, and the pressure is 2.1	g the air underwater, the
	a. (N	N What volume of air does the diver use?	
	A	nswer: 921 L	
) If the diver uses air at the rate of 8.0 L/min r last?	, how long will the diver's
	A	nswer: 115 min	