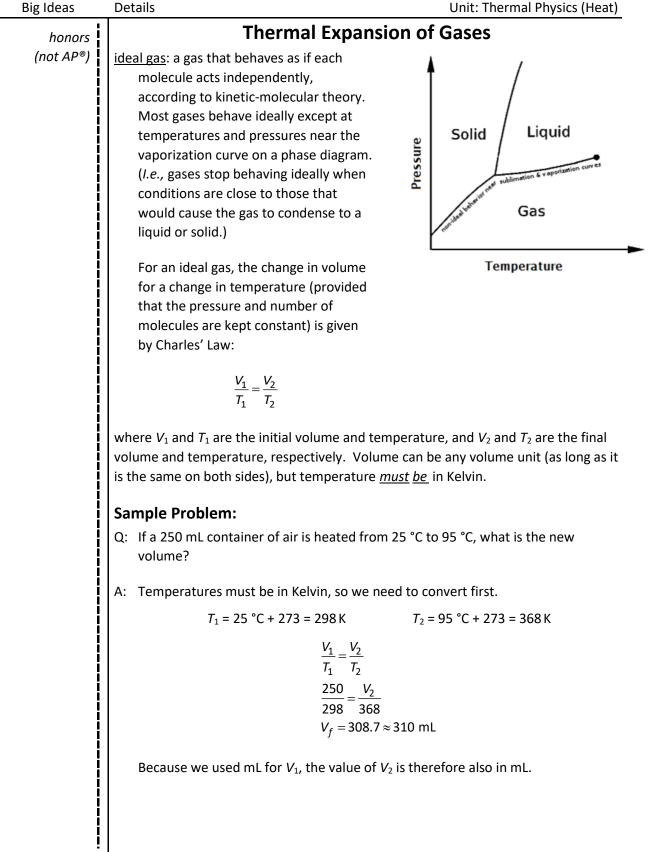

Big Ideas	Details Unit: Thermal Physics (Heat)
honors	Thermal Expansion
(not AP®)	Unit: Thermal Physics (Heat)
	MA Curriculum Frameworks (2016): N/A
	AP [®] Physics 2 Learning Objectives: N/A
	Mastery Objective(s): (Students will be able to)
	 Calculate changes in length & volume for solids, liquids and gases that are undergoing thermal expansion or contraction.
	Success Criteria:
	 Variables are correctly identified and substituted correctly into the correct equations.
	 Algebra is correct and rounding to appropriate number of significant figures is reasonable.
	Language Objectives:
	 Explain what the heat is used for in each step of a heating curve.
	Tier 2 Vocabulary: expand, contract
	Labs, Activities & Demonstrations:
	• Balloon with string & heat gun.
	• Brass ball & ring.
	• Bi-metal strip.
	Notes:
	expand: to become larger
	<u>contract</u> : to become smaller
	thermal expansion: an increase in the length and/or volume of an object caused by a change in temperature.
	When a substance is heated, the particles it is made of move farther and faster. This causes the particles to move farther apart, which causes the substance to expand.
	Solids tend to keep their shape when they expand. (Liquids and gases do not have a definite shape to begin with.)
	A few materials are known to contract with increasing temperature over specific temperature ranges. One well-known example is liquid water, which contracts as it heats from 0 °C to 4 °C. (Water expands as the temperature increases above 4 °C.)

eas						-
	Details				Unit: Therma	al Physics (Hea
onors	Thermal Expansion of Solids and Liquids					
AP®)	-	Thermal expansion is quantified in solids and liquids by defining a coëfficient of				
ļ	thermal expan	sion. The ch	anges in lengt	h and volume	are given by t	he equation:
ļ			Length	: $\Delta L = \alpha L_i \Delta T$		
ļ			Volume	$: \Delta V = \beta V_i \Delta T$		
ļ	where:					
ł	$\Delta L = chang$	e in length (r	n)			
ļ	$L_i = initial le$					
İ	α = linear o	oëfficient of	thermal expa	nsion (°C ⁻¹ or l	< ⁻¹)	
ļ	-	ge in volume	(m³)			
İ		/olume (m ³)			1 1	
	β = volume	etric coëfficie	nt of thermal	expansion (°C	⁻¹ or K ⁻¹)	
ļ	$\Delta T = temperature$	erature chan	ge (°C or K)			
į						
ļ	Values of α and	d β at 20°C fo	or some solids	and liquids:		
	Substance	α (°C ⁻¹)	β(°C ⁻¹)	Substance	α(°C ⁻¹)	β (°C ⁻¹)
ļ	aluminum	2.3×10 ⁻⁵	6.9×10 ⁻⁵	gold	1.4×10^{-5}	4.2×10 ⁻⁵
	copper	1.7×10^{-5}	5.1×10^{-5}	iron	1.18×10^{-5}	3.33×10^{-5}
	brass	1.9×10^{-5}	5.6×10 ⁻⁵	lead	2.9×10 ⁻⁵	-
	01000				2.5 × 10	8.7×10^{-5}
	diamond	1×10 ⁻⁶	3×10 ⁻⁶	mercury	6.1×10 ⁻⁵	8.7×10^{-5} 1.82×10^{-4}
				mercury silver		
	diamond		3×10 ⁻⁶	,	6.1×10 ⁻⁵	1.82×10^{-4}

Page: 222 Unit: Thermal Physics (Heat)


Use this space for summary and/or additional notes:

Use this space for summary and/or additional notes:

Big Ideas	Details	Unit: Thermal Physics (Heat)
honors (not AP®)		mometer contains about 0.22 cm ³ (about 3.0 g) of nge in volume of the mercury in a thermometer when it is 0. °C.
	A: For mercury, $\beta = 1.82$	$\times 10^{-4} {}^{\circ}C^{-1}.$
		$\Delta V = \beta V_i \Delta T$
		$\Delta V = (1.82 \times 10^{-4})(0.22)(25)$
ļ		$\Delta V = 0.00091~\mathrm{cm}^3$
		e 25 °C to the 50 °C mark is about 3.0 cm, we could use are out the bore (diameter of the column of mercury) of
ļ		$V = \pi r^2 h$
		$0.00091 = (3.14)r^2(3.0)$
		$r^2 = \frac{0.00091}{(3.14)(3.0)} = 9.66 \times 10^{-5}$
ł		$r = \sqrt{9.66 \times 10^{-5}} = 0.0098 \text{ cm}$
		er, which is twice the radius, so the bore of the 1098) = 0.0197 cm, which is about 0.20 mm.
ļ		

Big Ideas	Details	Unit: Thermal Physics (Heat)		
honors		Homework Problems		
(not AP®)	You will need to look up coëfficients of thermal expansion in Table K. Thermal			
	Properties of	Selected Materials on page 615 of your Physics Reference Tables.		
		brass rod is 27.50 cm long at 25 °C. How long would the rod be if it heated to 750. °C in a flame?		
	Answ	ver: 27.88 cm		
	2. (M)	A steel bridge is 625 m long when the temperature is 0 °C.		
	a	If the bridge did not have any expansion joints, how much longer would the bridge be on a hot summer day when the temperature is 35 °C?		
		(Use the linear coëfficient of expansion for iron.)		
		Answer: 0.258 m		
	t	Why do bridges need expansion joints?		
		A 15.00 cm long bimetal strip is aluminum on one side and copper on		
		ther. If the two metals are the same length at 20.0 °C, how long will be at 800. °C?		
	Answ	vers: aluminum: 15.269 cm; copper: 15.199 cm		
		glass volumetric flask is filled with water exactly to the 250.00 mL line . °C. What volume will the water occupy after it cools down to 20. °C?		
	Answ	ver: 248.45 mL		

Use this space for summary and/or additional notes:

		Thermal Expansion	Page: 227
Big Ideas	Details		Unit: Thermal Physics (Heat)
honors		Homework Proble	ems
nonors (not AP®)	1.	(S) A sample of argon gas was cooled, and its 250. mL. If its final temperature was -45.0 °C temperature?	s volume went from 380. mL to
	2.	Answer: 347 K or 74 °C (M) A balloon contains 250. mL of air at 50 °C cooled to 20.0 °C, what will be the new volum	