Unit: Magnetism & Electromagnetism

Electromagnetic Induction & Faraday's Law

Unit: Magnetism & Electromagnetism

NGSS Standards/MA Curriculum Frameworks (2016): HS-PS3-5

AP® Physics 2 Learning Objectives/Essential Knowledge (2024): 12.1.A, 12.1.A.1,

12.1.A.1.i, 12.1.A.1.ii, 12.1.A.2, 12.1.A.2.i, 12.1.A.2.ii, 12.1.B.2, 12.1.B.4

Mastery Objective(s): (Students will be able to...)

- Describe and draw magnetic fields.
- Calculate magnetic flux.

Success Criteria:

- Magnetic field lines connect north and south poles of the magnet.
- Arrows on field lines point from north to south.

Language Objectives:

• Explain how a compass works.

Tier 2 Vocabulary: field, north pole, south pole

Labs, Activities & Demonstrations:

- ferrofluid
- representation of flux as dots on a balloon

Notes:

Magnetic Flux

flux: the flow of fluid, energy or particles across a given area.

If a quantity (such as a magnetic field) originates from a point, the field spreads out and the amount of flux through a given area decreases as the square of the distance from that point.

	Floatromognatic Induction (9 Foradov's Low
	Electromagnetic induction a	& Faraday S Law Page: 298
Big Ideas	Details	Unit: Magnetism & Electromagnetism
	magnetic flux (Φ): the total amount of a magnetic field that passes through a	
	surface.	
	Stronger magnetic fields are generally shown with a higher density of field lin Using this representation, you can think of the magnetic flux as the number o field lines that pass through an area.	
	The equation for magnetic flux is Farad Law, named for the English physicist Michael Faraday. The equation is usua presented as a surface integral, but in algebraic form it looks like the following	day's magnetic field ng: A

$$\Phi_{B} = \vec{B} \cdot \vec{A} = BA \cos \theta$$

where:

- Φ = magnetic flux (Wb)
- \vec{B} = strength of magnetic field (T)
- \vec{A} = area of the region of interest that the magnetic field passes through (m²)

The unit for magnetic flux is the weber (Wb). One tesla is one weber per square meter.

$$1T \equiv 1\frac{Wb}{m^2}$$

Big Ideas Details

Unit: Magnetism & Electromagnetism

Magnetic Fields and Electric Current

Like gravitational and electric fields, a magnetic field is a force field. (Recall that force fields are vector quantities, meaning that they have both magnitude and direction.) The strength of a magnetic field is measured in teslas (T), named after the Serbian-American physicist Nikola Tesla.

 $1T = 1\frac{N}{A \cdot m}$

In the 1830s, English physicists Michael Faraday and Joseph Henry each independently discovered that an electric current could be produced by moving a magnet through a coil of wire, or by moving a wire through a magnetic field. This process is called electromagnetic induction.

If we move a conductive rod or wire that has length ℓ at a velocity v through a magnetic field of strength B, the magnetic forces send positive charges to one end of the rod and negative charges to the other. This creates a potential difference (emf) between the ends of the rod:

 $\mathcal{E} = \mathbf{v} \mathbf{B} \ell$

If the rod or wire is part of a closed loop (circuit), then the induced ε produces a current around the closed loop. From Ohm's Law, $\varepsilon = IR$, we get:

$$I = \frac{\mathcal{E}}{R} = \frac{\mathbf{v}B\ell}{R}$$

This production of emf is called the Hall effect, after American physicist Edwin Hall, who discovered this relationship in 1879.

EMF Produced by Changing Magnetic Flux

A changing magnetic field produces an electromotive force (emf) in a loop of wire. This emf is given by the equation:

$$\mathcal{E} = -\frac{d\Phi_B}{dt} = -\frac{\Delta\Phi_B}{\Delta t} = -\frac{\Delta(BAcos\theta)}{\Delta t}$$
(calculus) (algebraic)

If we replace the loop of wire with a coil that has *n* turns, the equation becomes:

$$\mathcal{E} = -n\frac{d\Phi_B}{dt} = -n\frac{\Delta\Phi_B}{t}$$
(calculus) (algebraic)