|      | Waves                                                                                                 | <b>Page:</b> 310                       |  |  |
|------|-------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|
| deas | Details                                                                                               | Unit: Mechanical Waves                 |  |  |
|      | Waves                                                                                                 |                                        |  |  |
|      | Unit: Mechanical Waves                                                                                |                                        |  |  |
|      | NGSS Standards/MA Curriculum Frameworks (20)                                                          | <b>16):</b> HS-PS4-1                   |  |  |
|      | AP <sup>®</sup> Physics 2 Learning Objectives/Essential Know                                          | vledge (2024): 6.A.1.2, 6.A.2.2,       |  |  |
|      | 6.B.3.1                                                                                               |                                        |  |  |
|      | Mastery Objective(s): (Students will be able to)                                                      |                                        |  |  |
|      | Describe and explain properties of waves (fr                                                          | equency, wavelength, etc.)             |  |  |
|      | Differentiate between transverse, longitudin                                                          | al and transverse waves.               |  |  |
|      | <ul> <li>Calculate wavelength, frequency, period, and</li> </ul>                                      | d velocity of a wave.                  |  |  |
|      | Success Criteria:                                                                                     |                                        |  |  |
|      | <ul> <li>Parts of a wave are identified correctly.</li> </ul>                                         |                                        |  |  |
|      | <ul> <li>Descriptions &amp; explanations account for obs</li> </ul>                                   | erved behavior.                        |  |  |
|      | Language Objectives:                                                                                  |                                        |  |  |
|      | <ul> <li>Describe how waves propagate.</li> </ul>                                                     |                                        |  |  |
|      | Tier 2 Vocabulary: wave, crest, trough, frequency                                                     | , wavelength                           |  |  |
|      | Labs. Activities & Demonstrations:                                                                    |                                        |  |  |
|      | <ul> <li>Show &amp; tell: transverse waves in a string tied</li> </ul>                                | d at one end. longitudinal waves in    |  |  |
|      | a spring, torsional waves.                                                                            | , .                                    |  |  |
|      | • Buzzer in a vacuum.                                                                                 |                                        |  |  |
|      | <ul> <li>Tacoma Narrows Bridge collapse movie.</li> </ul>                                             |                                        |  |  |
|      | <ul> <li>Japan tsunami TV footage.</li> </ul>                                                         |                                        |  |  |
|      | Notes:                                                                                                |                                        |  |  |
|      | wave: a disturbance that travels from one place to                                                    | o another.*                            |  |  |
|      | medium: a substance that a wave travels through                                                       |                                        |  |  |
|      |                                                                                                       |                                        |  |  |
|      | propagation. the process of a wave traveling through                                                  | ign space.                             |  |  |
|      |                                                                                                       |                                        |  |  |
|      |                                                                                                       |                                        |  |  |
|      |                                                                                                       |                                        |  |  |
|      |                                                                                                       |                                        |  |  |
|      |                                                                                                       |                                        |  |  |
|      |                                                                                                       |                                        |  |  |
|      | * This is my favorite definition in these notes. I jokingly sugge<br>"wave" based on this definition. | st that I nickname some of my students |  |  |

|                                                                                                                                                               |                                                                                                                                                                                                                                            | Wa                                                                                         | ves                                                                                               | <b>Page:</b> 311                                                                                                 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| Big Ideas                                                                                                                                                     | Details                                                                                                                                                                                                                                    |                                                                                            |                                                                                                   | Unit: Mechanical Waves                                                                                           |  |
| honors<br>(not AP®)                                                                                                                                           | mechanical wave: a wave that propagates through a medium via contact between particles of the medium. Some examples of mechanical waves include ocean waves and sound waves.                                                               |                                                                                            |                                                                                                   |                                                                                                                  |  |
|                                                                                                                                                               | <ol> <li>The energy of the wave is transmitted via the particles of the medium as the<br/>wave passes through it.</li> </ol>                                                                                                               |                                                                                            |                                                                                                   |                                                                                                                  |  |
|                                                                                                                                                               | <ol> <li>The wave travels through the medium. The particles of the medium are<br/>moved by the wave passing through, and then return to their original<br/>position. (The duck sitting on top of the wave below is an example.)</li> </ol> |                                                                                            |                                                                                                   |                                                                                                                  |  |
| <ul> <li>Waves generally move fastest in solids and slowest in liquids. The value a mechanical wave is dependent on characteristics of the medium:</li> </ul> |                                                                                                                                                                                                                                            |                                                                                            |                                                                                                   |                                                                                                                  |  |
|                                                                                                                                                               |                                                                                                                                                                                                                                            | relevant example                                                                           |                                                                                                   | mple                                                                                                             |  |
|                                                                                                                                                               | state                                                                                                                                                                                                                                      | factors                                                                                    | medium                                                                                            | velocity of sound                                                                                                |  |
|                                                                                                                                                               | gas                                                                                                                                                                                                                                        | density,<br>pressure                                                                       | air<br>(20 °C and 1 atm)                                                                          | 343 m/s (768 mi/hr)                                                                                              |  |
|                                                                                                                                                               | liquid                                                                                                                                                                                                                                     | density,<br>compressibility                                                                | water (20 °C)                                                                                     | 1481 <sup>m</sup> / <sub>s</sub> (3317 <sup>mi</sup> / <sub>hr</sub> )                                           |  |
|                                                                                                                                                               | solid                                                                                                                                                                                                                                      | stiffness                                                                                  | steel (longitudinal<br>wave)                                                                      | $6000\frac{m}{s}$ (13 000 $\frac{mi}{hr}$ )                                                                      |  |
|                                                                                                                                                               | electromagnetic<br>other. Elect<br>slowed dow<br>discussed in<br>354.                                                                                                                                                                      | <u>wave</u> : a wave of e<br>romagnetic waves<br>n by interactions v<br>more detail in the | electricity and magne<br>can propagate throu<br>vith a medium. Elect<br><i>Electromagnetic Wa</i> | tism interacting with each<br>Igh empty space, and are<br>romagnetic waves are<br>Inves section starting on page |  |



honors (not AP®) Details

**Big Ideas** 

torsional wave: a type of transverse wave that propagates by twisting about its direction of propagation.



The most famous example of the destructive power of a torsional wave was the Tacoma Narrows Bridge, which collapsed on November 7, 1940. On that day, strong winds caused the bridge to vibrate torsionally. At first, the edges of the bridge swayed about eighteen inches. (This behavior had been observed previously, earning the bridge the nickname "Galloping Gertie".) However, after a support cable snapped, the vibration increased significantly, with the edges of the bridge being displaced up to 28 feet! Eventually, the bridge started twisting in two halves, one half twisting clockwise and the other half twisting counterclockwise, and then back again. This opposing torsional motion eventually caused the bridge to twist apart and collapse.



The bridge's collapse was captured on film. Video clips of the bridge twisting and collapsing are available on the internet. There is a detailed analysis of the bridge's collapse at http://www.vibrationdata.com/Tacoma.htm





|                   | Waves                                                                                                                                                                                                                              | <b>Page:</b> 316                                                         |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| Big Ideas Det     | ails                                                                                                                                                                                                                               | Unit: Mechanical Waves                                                   |  |
| vel               | <u>ocity</u> : the velocity of a wave depends on its frequency                                                                                                                                                                     | $\gamma(f)$ and its wavelength ( $\lambda$ ):                            |  |
|                   | $v = \lambda f$<br>The velocity of electromagnetic waves (such as light, radio waves, microwav<br>X-rays, <i>etc</i> .) is called the <u>speed of light</u> , which is $3.00 \times 10^8 \frac{\text{m}}{\text{s}}$ in a vacuum. T |                                                                          |  |
|                   |                                                                                                                                                                                                                                    |                                                                          |  |
|                   |                                                                                                                                                                                                                                    |                                                                          |  |
|                   | speed of light is slower in a medium that has an indet than 1.                                                                                                                                                                     | ex of refraction <sup>*</sup> greater                                    |  |
|                   | The velocity of a wave traveling through a string und<br>of string, a rubber band, a violin/guitar string, <i>etc.</i> ) of<br>the ratio of the mass of the string to its length:                                                  | ler tension (such as a piece<br>lepends on the tension and               |  |
|                   | $v_{string} = \sqrt{\frac{F_T L}{m}}$                                                                                                                                                                                              |                                                                          |  |
|                   | where $F_T$ is the tension in the string, $L$ is the length, a                                                                                                                                                                     | and <i>m</i> is the mass.                                                |  |
| Sa                | mple Problem:                                                                                                                                                                                                                      |                                                                          |  |
| Q:                | The Boston radio station WZLX broadcasts waves wi 100.7 MHz. If the waves travel at the speed of light,                                                                                                                            | th a frequency of<br>what is the wavelength?                             |  |
| A:                | $f = 100.7 \mathrm{MHz} = 100700000 \mathrm{Hz} = 1.007 \times 10^8 \mathrm{Hz}$                                                                                                                                                   |                                                                          |  |
|                   | $v = c = 3.00 \times 10^8 \frac{\text{m}}{\text{s}}$                                                                                                                                                                               |                                                                          |  |
|                   | $v = \lambda f$                                                                                                                                                                                                                    |                                                                          |  |
|                   | $3.00 \times 10^8 = \lambda (1.007 \times 10^8)$                                                                                                                                                                                   |                                                                          |  |
|                   | $\lambda = \frac{3.00 \times 10^8}{1.007 \times 10^8} = 2.98 \mathrm{m}$                                                                                                                                                           |                                                                          |  |
|                   |                                                                                                                                                                                                                                    |                                                                          |  |
|                   |                                                                                                                                                                                                                                    |                                                                          |  |
|                   |                                                                                                                                                                                                                                    |                                                                          |  |
|                   |                                                                                                                                                                                                                                    |                                                                          |  |
|                   |                                                                                                                                                                                                                                    |                                                                          |  |
| * Th<br>an<br>Inc | e index of refraction is a measure of how much light bends when<br>d another. The sine of the angle of refraction is proportional to t<br>dex of refraction is part of the <i>Refraction</i> topic starting on page 4              | it moves between one medium<br>the speed of light in that medium.<br>65. |  |



## Waves

