

eas Details		Unit: Light & Optics					
	Diffraction Unit: Light & Optics						
Unit: Ligh							
NGSS Sta	andards/MA Curriculum Frameworks (201	L 6): N/A					
-	sics 2 Learning Objectives/Essential Know	ledge (2024): 6.C.2.1,					
	.3.1, 6.C.4.1						
 Mastery Objective(s): (Students will be able to) Explain how light "spreads" beyond an opening or around an obstacle. Perform calculations relating to the location of bright and dim regions when light passes through a diffraction grating. Success Criteria: 							
					• Exp		
						culations are correct with correct algebra.	
						e Objectives:	
	lain why looking through a diffraction grating	produces a "rainbow".					
Tier 2 Vo	cabulary: light, diffraction, slit						
throu	n: the slight bending of a wave as it passes aro ngh a slit: Wave Motion Or a slit: The passes straight through a wide opening, the						
line. How slit so nar approxim waveleng effectivel	vever, if we make the row that the width is ately equal to the th, then the slit y becomes a point, and n occurs in all directions						

Page: 402

		Diffraction	Page: 403					
magnitude as the wavelength, the light can only hit the wall in specific locations. In the this diagram, light travels the same distance for paths 1 and 2—the same number of wavelengths. Light waves hitting this point will add constructively, which makes the light brighter. However, for paths 3 and 4, path 4 is ½ wavelength longer than path 3. Light taking path 4 is ½ wavelength out of phase with light from path 3. The waves add destructively (cancel), and there is no light: Farther up or down on the right side will be alternating locations where the difference in path length results in waves that are different by an exact multiple of the wavelength (in phase = constructive interference = bright spots), vs. by a multiple of the wavelength plus ½ (out-of-phase = destructive interference = darl spots). The equation that relates the distance between these regions of constructive interference to the distance between the slits in a diffraction grating is: $d \sin \theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the t paths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from one slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits	Big Ideas	Details	Unit: Light & Optics					
In the this diagram, light travels the same distance for paths 1 and 2—the same number of wavelengths. Light waves hitting this point will add constructively, which makes the light brighter. However, for paths 3 and 4, path 4 is $\frac{1}{2}$ wavelength longer than path 3. Light taking path 4 is $\frac{1}{2}$ wavelength $\frac{1}{2}$		If we shine light through a slit whose thickness is approximately the same order of						
number of wavelengths. Light waves hitting this point will add constructively, which makes the light brighter. However, for paths 3 and 4, path 4 is % wavelength longer than path 3. Light taking path 4 is % wavelength out of phase with light from path 3. The waves add destructively (cancel), and there is no light: Farther up or down on the right side will be alternating locations where the difference in path length results in waves that are different by an exact multiple of the wavelength (in phase = constructive interference = bright spots), vs. by a multiple of the wavelength plus % (out-of-phase = destructive interference = dark spots). The equation that relates the distance between these regions of constructive interference to the distance between the slits in a diffraction grating is: $d \sin \theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the t paths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from on slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits		magnitude as the wavelength, the light can only hit the wa	magnitude as the wavelength, the light can only hit the wall in specific locations.					
number of wavelengths. Light waves hitting this point will add constructively, which makes the light brighter. However, for paths 3 and 4, path 4 is % wavelength longer than path 3. Light taking path 4 is % wavelength out of phase with light from path 3. The waves add destructively (cancel), and there is no light: Farther up or down on the right side will be alternating locations where the difference in path length results in waves that are different by an exact multiple of the wavelength (in phase = constructive interference = bright spots), vs. by a multiple of the wavelength plus % (out-of-phase = destructive interference = dark spots). The equation that relates the distance between these regions of constructive interference to the distance between the slits in a diffraction grating is: $d \sin \theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the t paths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from on slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits								
waves hitting this point will add constructively, which makes the light brighter. However, for paths 3 and 4, path 4 is ½ wavelength longer than path 3. Light taking path 4 is ½ wavelength out of phase with light from path 3. The waves add destructively (cancel), and there is no light: Farther up or down on the right side will be alternating locations where the difference in path length results in waves that are different by an exact multiple of the wavelength (in phase = constructive interference = bright spots), vs. by a multiple of the wavelength plus ½ (out-of-phase = destructive interference = darl spots). The equation that relates the distance between these regions of constructive interference to the distance between the slits in a diffraction grating is: $d \sin \theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the t paths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from of slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits			In the this diagram, light travels the same distance for paths 1 and 2—the same					
constructively, which makes the light brighter. However, for paths 3 and 4, path 4 is ½ wavelength longer than path 3. Light taking path 4 is ½ wavelength out of phase with light from path 3. The waves add destructively (cancel), and there is no light: Farther up or down on the right side will be alternating locations where the difference in path length results in waves that are different by an exact multiple of the wavelength (in phase = constructive interference = bright spots), vs. by a multiple of the wavelength plus ½ (out-of-phase = destructive interference = dark spots). The equation that relates the distance between these regions of constructive interference to the distance between the slits in a diffraction grating is: $d \sin \theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the t paths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from of slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits		number of wavelengths. Light	1					
light brighter. However, for paths 3 and 4, path 4 is ½ wavelength longer than path 3. Light taking path 4 is ½ wavelength out of phase with light from path 3. The waves add destructively (cancel), and there is no light: Farther up or down on the right side will be alternating locations where the difference in path length results in waves that are different by an exact multiple of the wavelength (in phase = constructive interference = bright spots), vs. by a multiple of the wavelength plus ½ (out-of-phase = destructive interference = dark spots). The equation that relates the distance between these regions of constructive interference to the distance between the slits in a diffraction grating is: $d \sin \theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the t paths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from o slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits		waves hitting this point will add						
However, for paths 3 and 4, path 4 is ½ wavelength longer than path 3. Light taking path 4 is ½ wavelength out of phase with light from path 3. The waves add destructively (cancel), and there is no light: Farther up or down on the right side will be alternating locations where the difference in path length results in waves that are different by an exact multiple of the wavelength (in phase = constructive interference = bright spots), vs. by a multiple of the wavelength plus ½ (out-of-phase = destructive interference = darl spots). The equation that relates the distance between these regions of constructive interference to the distance between the slits in a diffraction grating is: $d \sin \theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the t paths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from of slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits		constructively, which makes the	3					
is ½ wavelength longer than path 3. Light taking path 4 is ½ wavelength out of phase with light from path 3. The waves add destructively (cancel), and there is no light: Farther up or down on the right side will be alternating locations where the difference in path length results in waves that are different by an exact multiple of the wavelength (in phase = constructive interference = bright spots), vs. by a multiple of the wavelength plus ½ (out-of-phase = destructive interference = dark spots). The equation that relates the distance between these regions of constructive interference to the distance between the slits in a diffraction grating is: $d \sin \theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the t paths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from of slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits		light brighter.	3					
is ½ wavelength longer than path 3. Light taking path 4 is ½ wavelength out of phase with light from path 3. The waves add destructively (cancel), and there is no light: Farther up or down on the right side will be alternating locations where the difference in path length results in waves that are different by an exact multiple of the wavelength (in phase = constructive interference = bright spots), vs. by a multiple of the wavelength plus ½ (out-of-phase = destructive interference = dark spots). The equation that relates the distance between these regions of constructive interference to the distance between the slits in a diffraction grating is: $d \sin \theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the t paths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from of slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits			4 1 1					
Light taking path 4 is ½ wavelength out of phase with light from path 3. The waves add destructively (cancel), and there is no light: Farther up or down on the right side will be alternating locations where the difference in path length results in waves that are different by an exact multiple of the wavelength (in phase = constructive interference = bright spots), vs. by a multiple of the wavelength plus ½ (out-of-phase = destructive interference = dark spots). The equation that relates the distance between these regions of constructive interference to the distance between the slits in a diffraction grating is: $d \sin \theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the t paths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from σ_s slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits			\sim					
out of phase with light from path 3. The waves add destructively (cancel), and there is no light: Farther up or down on the right side will be alternating locations where the difference in path length results in waves that are different by an exact multiple of the wavelength (in phase = constructive interference = bright spots), vs. by a multiple of the wavelength plus ½ (out-of-phase = destructive interference = dark spots). The equation that relates the distance between these regions of constructive interference to the distance between the slits in a diffraction grating is: $d \sin \theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the t paths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from α slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits			2 2					
The waves add destructively (cancel), and there is no light: Farther up or down on the right side will be alternating locations where the difference in path length results in waves that are different by an exact multiple of the wavelength (in phase = constructive interference = bright spots), vs. by a multiple of the wavelength plus ½ (out-of-phase = destructive interference = dark spots). The equation that relates the distance between these regions of constructive interference to the distance between the slits in a diffraction grating is: $d \sin \theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the t paths (integer) θ_m = the angle of emergence (or angle of deviation) in order for light from σ slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits								
(cancel), and there is no light: Farther up or down on the right side will be alternating locations where the difference in path length results in waves that are different by an exact multiple of the wavelength (in phase = constructive interference = bright spots), vs. by a multiple of the wavelength plus ½ (out-of-phase = destructive interference = dark spots). The equation that relates the distance between these regions of constructive interference to the distance between the slits in a diffraction grating is: $d \sin \theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the t paths (integer) θ_m = the angle of emergence (or angle of deviation) in order for light from a slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits								
Farther up or down on the right side will be alternating locations where the difference in path length results in waves that are different by an exact multiple of the wavelength (in phase = constructive interference = bright spots), vs. by a multiple of the wavelength plus ½ (out-of-phase = destructive interference = dark spots). The equation that relates the distance between these regions of constructive interference to the distance between the slits in a diffraction grating is: $d \sin \theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the t paths (integer) θ_m = the angle of emergence (or angle of deviation) in order for light from σ slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits								
difference in path length results in waves that are different by an exact multiple of the wavelength (in phase = constructive interference = bright spots), vs. by a multiple of the wavelength plus ½ (out-of-phase = destructive interference = dark spots). The equation that relates the distance between these regions of constructive interference to the distance between the slits in a diffraction grating is: $d \sin \theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the t paths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from o slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits		(cancel), and there is no light:						
difference in path length results in waves that are different by an exact multiple of the wavelength (in phase = constructive interference = bright spots), vs. by a multiple of the wavelength plus ½ (out-of-phase = destructive interference = dark spots). The equation that relates the distance between these regions of constructive interference to the distance between the slits in a diffraction grating is: $d \sin \theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the t paths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from o slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits		Earthor up or down on the right side will be alternating low	sations whore the					
the wavelength (in phase = constructive interference = bright spots), vs. by a multiple of the wavelength plus ½ (out-of-phase = destructive interference = dark spots). The equation that relates the distance between these regions of constructive interference to the distance between the slits in a diffraction grating is: $d \sin \theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the t paths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from σ_m slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits								
multiple of the wavelength plus ½ (out-of-phase = destructive interference = dark spots). The equation that relates the distance between these regions of constructive interference to the distance between the slits in a diffraction grating is: $d\sin\theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the to paths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from σ slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits			, ,					
spots). The equation that relates the distance between these regions of constructive interference to the distance between the slits in a diffraction grating is: $d\sin\theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the topaths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from σ slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits								
The equation that relates the distance between these regions of constructive interference to the distance between the slits in a diffraction grating is: $d\sin\theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the to paths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from σ_{slit} to add constructively to light from a neighboring slit that is m_{slit} wavelengths away. d = the distance between the slits								
interference to the distance between the slits in a diffraction grating is: $d\sin\theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the topaths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from a slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits		spots).						
interference to the distance between the slits in a diffraction grating is: $d\sin\theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the top paths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from a slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits		The equation that relates the distance between these regi	The equation that relates the distance between these regions of constructive					
$d\sin\theta_m = m\lambda$ where: m = the number of waves that equals the difference in the lengths of the tripaths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from a slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits								
where: m = the number of waves that equals the difference in the lengths of the tripaths (integer) $\theta_m =$ the angle of emergence (or angle of deviation) in order for light from a slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits								
 m = the number of waves that equals the difference in the lengths of the t paths (integer) θ_m = the angle of emergence (or angle of deviation) in order for light from a slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits 		$d\sin\theta_m = m\lambda$						
 paths (integer) θ_m = the angle of emergence (or angle of deviation) in order for light from a slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits 		where:						
 paths (integer) θ_m = the angle of emergence (or angle of deviation) in order for light from a slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits 								
 θ_m = the angle of emergence (or angle of deviation) in order for light from a slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits 			0					
 slit to add constructively to light from a neighboring slit that is m wavelengths away. d = the distance between the slits 			in order for light from one					
wavelengths away. d = the distance between the slits			-					
d = the distance between the slits								
λ = the wavelength of the light								
		λ = the wavelength of the light						

De	tails			Unit: Light & Optics				
Sa	Sample Problem:							
Q:	Consider three laser pointers: a red laser with a wavelength of 650 nm, a green laser with a wavelength of 532 nm, and a blue laser with a wavelength of 405 nm. If each of these is shone through a diffraction grating with 5000 lines per cm, what will be the angle of emergence for each color?							
A:	For our diffraction grating, 5000 lines per cm equals 500000 lines per meter. $d = \frac{1}{500000} = 2 \times 10^{-6} \text{ m}$							
	For the red laser, 650 nm equals $\lambda = 650 \text{ nm} = 6.50 \times 10^{-7} \text{m}$							
	The equation is:							
	$d\sin\theta_m = m\lambda$							
	For the red laser at $m = 1$, this becomes:							
	$(2 \times 10^{-6}) \sin \theta = (1)(6.50 \times 10^{-7})$							
	$\sin\theta = \frac{6.50 \times 10^{-6}}{2 \times 10^{-6}} = 0.325$							
	$\theta = \sin^{-1}(0.325) = 19.0^{\circ}$ For the green laser ($\lambda = 532 \text{ nm} = 5.32 \times 10^{-7} \text{m}$) and the blue laser also at $m = 1$							
	$\sin\theta = \frac{5.32 \times 10^{-7}}{2 \times 10^{-6}} = 0.260$	6	and	$\sin\theta = \frac{4.05 \times 10^{-7}}{2 \times 10^{-6}} = 0.203$				
	$\theta = \sin^{-1}(0.266) = 15.4^{\circ}$			$\theta = \sin^{-1}(0.203) = 11.7^{\circ}$				
	Sa Q:	Q: Consider three laser point laser with a wavelength 405 nm. If each of these per cm, what will be the A: For our diffraction gratind $d = \frac{1}{500\ 000} = 2 \times 10^{-6}$ m For the red laser, 650 nm The equation is: For the red laser at $m = 1000$ For the red laser at $m = 1000$ For the red laser at $m = 1000$ For the green laser ($\lambda = (\lambda = 405 \text{ nm} = 4.05 \times 10^{-7})$ $\sin \theta = \frac{5.32 \times 10^{-7}}{2 \times 10^{-6}} = 0.26$	Sample Problem: Q: Consider three laser pointers: a red laser laser with a wavelength of 532 nm, and 405 nm. If each of these is shone throu per cm, what will be the angle of emerge A: For our diffraction grating, 5 000 lines p $d = \frac{1}{500\ 000} = 2 \times 10^{-6} \text{ m}$ For the red laser, 650 nm equals $\lambda = 65$ The equation is: $d \sin \theta$ For the red laser at $m = 1$, this becomes $(2 \times 10^{-6}) \sin \theta =$ $\sin \theta = \frac{6.50 \times 11}{2 \times 10}$ $\theta = \sin^{-1}(0.325)$ For the green laser ($\lambda = 532 \text{ nm} = 5.32 \times$ $(\lambda = 405 \text{ nm} = 4.05 \times 10^{-7} \text{m})$: $\sin \theta = \frac{5.32 \times 10^{-7}}{2 \times 10^{-6}} = 0.266$	Sample Problem: Q: Consider three laser pointers: a red laser with a waveled laser with a wavelength of 532 nm, and a blue laser with 405 nm. If each of these is shone through a diffraction per cm, what will be the angle of emergence for each of A: For our diffraction grating, 5 000 lines per cm equals 50 $d = \frac{1}{500\ 000} = 2 \times 10^{-6} \text{ m}$ For the red laser, 650 nm equals $\lambda = 650 \text{ nm} = 6.50 \times 10^{-7}$ The equation is: $d\sin\theta_m = m\lambda$ For the red laser at $m = 1$, this becomes: $(2 \times 10^{-6})\sin\theta = (1)(6.50 \times 10^{-7})$ $\sin\theta = \frac{6.50 \times 10^{-7}}{2 \times 10^{-6}} = 0.325$ $\theta = \sin^{-1}(0.325) = 19.0^{\circ}$ For the green laser $(\lambda = 532 \text{ nm} = 5.32 \times 10^{-7}\text{m})$ and the $(\lambda = 405 \text{ nm} = 4.05 \times 10^{-7}\text{m})$: $\sin\theta = \frac{5.32 \times 10^{-7}}{2 \times 10^{-6}} = 0.266$ and				

