Unit: Light & Optics

MA Curriculum Frameworks (2016): N/A

AP[®] Physics 2 Learning Objectives: 6.C.2.1, 6.C.3.1, 6.C.4.1

Mastery Objective(s): (Students will be able to ...)

- Explain how light "spreads" beyond an opening or around an obstacle.
- Perform calculations relating to the location of bright and dim regions when light passes through a diffraction grating.

Success Criteria:

- Explanations account for observed behavior.
- Calculations are correct with correct algebra.

Language Objectives:

• Explain why looking through a diffraction grating produces a "rainbow".

Tier 2 Vocabulary: light, diffraction, slit

Labs, Activities & Demonstrations:

- thickness of human hair
- double slit experiment with laser & diffraction grating

Notes:

<u>diffraction</u>: the slight bending of a wave as it passes around the edge of an object or through a slit:

When light passes straight through a wide opening, the rays continue in a straight

line. However, if we make the slit so narrow that the width is approximately equal to the wavelength, then the slit effectively becomes a point, and diffraction occurs in all directions from it.

Use this space for summary and/or additional notes:

	Diffaction	rage. J24		
Big Ideas	Details	Unit: Light & Optics		
	e shine light through a slit whose thickness is approximately the same order of			
	magnitude as the wavelength, the light can only hit the wall in specific locations.			
	In the this diagram, light travels the same distance for paths 1 and 2—the same			
	number of wavelengths. Light			
	waves hitting this point will add	- 3		
	constructively, which makes the			
	light brighter.	3 4		
	However for naths 3 and 4 nath 4	4 1		
	is ½ wavelength longer than path 3	2		
	Light taking path 4 is ½ wavelength			
	out of phase with light from path 3.			
	The waves add destructively			
	(cancel), and there is no light:	1		
	itions where the by an exact multiple of ht spots), <i>vs.</i> by a ve interference = dark on s of constructive on grating is:			
	$d\sin\theta_m = m\lambda$			
	where:			
	<i>m</i> = the number of waves that equals the difference paths (integer)	in the lengths of the two		
	θ_m = the angle of emergence (or angle of deviation) in slit to add constructively to light from a neighbor wavelengths away.	 the angle of emergence (or angle of deviation) in order for light from one slit to add constructively to light from a neighboring slit that is <i>m</i> wavelengths away. 		
	d = the distance between the slits			
	λ = the wavelength of the light			

Use this space for summary and/or additional notes:

Use this space for summary and/or additional notes:

Big Ideas	De	tails			Unit: Light & Optics			
	Sa	ample Problem:						
	Q:	Consider three laser pointers: a red laser with a wavelength of 650 nm, a green laser with a wavelength of 532 nm, and a blue laser with a wavelength of 405 nm. If each of these is shone through a diffraction grating with 5 000 lines per cm, what will be the angle of emergence for each color?						
	A:	For our diffraction grating, 5000 lines per cm equals 500000 lines per meter.						
		$d = \frac{1}{500000} = 2 \times 10^{-6} \mathrm{m}$						
		For the red laser, 650 nm equals $\lambda = 650 \text{nm} = 6.50 \times 10^{-7} \text{m}$						
		The equation is:						
		$d\sin\theta_m = m\lambda$						
		For the red laser at $m = 1$, this becomes:						
		$(2 \times 10^{-6}) \sin \theta = (1)(6.50 \times 10^{-7})$						
		$\sin\theta \!=\! \frac{6.50 \!\times\! 10^{-7}}{2 \!\times\! 10^{-6}} \!=\! 0.325$						
		$\theta = \sin^{-1}(0.325) = 19.0^{\circ}$						
		For the green laser ($\lambda = 532 \text{ nm} = 5.32 \times 10^{-7} \text{m}$) and the blue laser also at $m = 1$ ($\lambda = 405 \text{ nm} = 4.05 \times 10^{-7} \text{m}$):						
		$\sin\theta = \frac{5.32 \times 10^{-7}}{2 \times 10^{-6}} = 0.260$	6	and	$\sin\theta = \frac{4.05 \times 10^{-7}}{2 \times 10^{-6}} = 0.203$			
		$\theta = \sin^{-1}(0.266) = 15.4^{\circ}$			$\theta = \sin^{-1}(0.203) = 11.7^{\circ}$			

Use this space for summary and/or additional notes:

Use this space for summary and/or additional notes: