

 $E = mc^2$

where E is the binding energy, m is the mass defect, and c is the speed of light $(3 \times 10^8 \frac{\text{m}}{\text{c}})$, which means c^2 is $9 \times 10^{16} \frac{\text{m}^2}{c^2}$ (a very large number)!

Use this space for summary and/or additional notes:

Big Ideas	Mass Defect & Binding EnergyPage: 592DetailsUnit: Atomic and Nuclear Physics
	You can figure out how much energy is produced by spontaneous radioactive decay by calculating the difference in the sum of the binding energies of the atoms before and after the decay.
	Sample problem:
	Q: Calculate the mass defect of 1 mole of uranium-238.
	A: ²³⁸ ₉₂ U has 92 protons, 146 neutrons, and 92 electrons. This means the total mass
	of one atom of $^{238}_{92}$ U should theoretically be:
	92 protons × 1.0073 amu = 92.6704 amu
	146 neutrons × 1.0087 amu = 147.2661 amu
	92 electrons × 0.000 5486 amu = 0.0505 amu
	92.6704 + 147.2661 + 0.0505 = 239.9870 amu
	The actual observed mass of one atom of $\frac{238}{92}$ U is 238.0003 amu.
	The mass defect of one atom of $^{238}_{92}$ U is therefore 239.9870 – 238.0003 = 1.9867 amu.
	One mole of $\frac{238}{92}$ U would have a mass of 238.0003 g, and therefore a total mass defect of 1.9867 g, or 0.0019867 kg.
	Because $E = mc^2$, that means the binding energy of one mole of $\frac{238}{92}$ U is:
	$0.0019867 \text{ kg} \times (3.00 \times 10^8)^2 = 1.79 \times 10^{14} \text{ J}$
	In case you don't realize just how large that number is, the binding energy of just 238 g (1 mole) of $\frac{238}{92}$ U would be enough energy to heat every house on Earth for an entire winter!

Use this space for summary and/or additional notes: