Details

Half-Life

Unit: Atomic and Nuclear Physics

MA Curriculum Frameworks (2016): N/A

AP Physics 2 Learning Objectives: 7.C.3.1

Mastery Objective(s): (Students will be able to...)

- Calculate the amount of material remaining after an amount of time.
- Calculate the elapsed time based on the amount of material remaining.

Success Criteria:

- Variables are correctly identified and substituted correctly into the correct equation.
- Algebra is correct and rounding to appropriate number of significant figures is reasonable.

Language Objectives:

• Explain why the mass of material that decays keeps decreasing.

Tier 2 Vocabulary: life, decay

Labs, Activities & Demonstrations:

• half-life of dice or M & M candies

Notes:

The atoms of radioactive elements are unstable, and they spontaneously decay (change) into atoms of other elements.

For any given atom, there is a certain probability, P, that it will undergo radioactive decay in a given amount of time. The half-life, T, is how much time it would take to have a 50% probability of the atom decaying. If you start with n atoms, after one half-life, half of them (0.5n) will have decayed.

If we start with 32 g of ⁵³Fe, which has a half-life (T) of 8.5 minutes, we would observe the following:

# minutes	0	8.5	17	25.5	34
# half lives	0	1	2	3	4
amount left	32 g	16 g	8 g	4 g	2 g

Use this space for summary and/or additional notes:

Big Ideas	Details Unit: Atomic and Nuclear Ph							
	Amount of Material Remaining							
	Most half-life problems in a first-year high school physics course involve a whole number of half-lives and can be solved by making a table like the one above. However, on the AP [®] exam you can expect problems that do not involve a whole number of half-lives, and you need to use the exponential decay equation.							
	_	se <i>n</i> is decreasing, the number of atoms (and consequently also the mass) ning after any specific period of time follows the exponential decay function $A = A_{\alpha} (\frac{1}{2})^{n}$						
			0.2					
	where A is the amount yo the number of half-lives t			ie amount	you starte	ed with, and <i>n</i> i		
	Because the number of h half-life ($ au$), we can repla					divided by the		
		, .						
	$A = A_o \left(\frac{1}{2}\right)^{t/\tau} \text{ or } \frac{A}{A_o} = \left(\frac{1}{2}\right)^{t/\tau}$							
	If you want to find either A or A_o , you can plug the values for t and τ into the aborequation.							
	Sample Problem:	Sample Problem:						
	Q: If you start with 228	Q: If you start with 228 g of ⁹⁰ Sr, how much would remain after 112.4 years?						
	A: $A_0 = 228 \text{ g}$	A: $A_0 = 228 \text{ g}$						
	A = A							
	T = 28.1 years (from the "Selected Radioisotopes" table in your reference table t = 112.4 years							
	$A = A_0 \left(\frac{1}{2}\right)^{t/\tau}$							
	$A = (228) \left(\frac{1}{2}\right)^{112.4/28.1} = (228) \left(\frac{1}{2}\right)^4 = (228) \left(\frac{1}{16}\right) = 14.25 \text{ g}$							
	Or, if the decay happens to occur over an integer number of half-lives (as in the example), you can use a chart:							
	# years	0	28.1	56.2	84.3	112.4		
	# half lives	0	1	2	3	4		
	amount left	228 g	114 g	57 g	28.5 g	14.25 g		
	Use this space for summa							

Half-Life

Page: 594

		11	all-Li				r	age: 5
Big Ideas	Details				Uı	nit: Ato	mic and Nuclea	ar Physi
		Finding the Time that has Passed						
	Integer Number of Half-Lives							
	-	If the amount you started with divided by the amount left is an exact power of two, you have an integer number of half-lives and you can just make a table.						
	-							
		-						
		Sample problem:						
	Q: If you started with 64 g of ¹³¹ I, how long would it take until there was only						nly 4 g	
	remaining?	The half-life (<i>T</i>) of ¹³¹	l is 8.07	days.			
	A: $\frac{64}{4} = 16$ wh	iich is a power	of 2, so	we can	simply n	nake a t	able:	
		# half lives	0	1	2	3	4	
		amount remaining	64 g	32 g	16 g	8 g	4 g	
	From the ta	From the table, after 4 half-lives, we have 4 g remaining.						
	The half-life	e (<i>τ</i>) of ¹³¹ Ι is 8.	.07 days	•				
			8.0	7 × 4 = 3	32.3 day	S		
					,			

Half-Life

Use this space for summary and/or additional notes:

Page: 595

Big Ideas	Half-Life Unit: Atomic a	Page: 596					
Dig ideas	Details Unit: Atomic and Nuclear Physics Non-Integer Number of Half-Lives						
	If you need to find the elapsed time and it is not an exact half-life, logarithms.						
	In mathematics, the only reason you ever need to use logarithms is solve for a variable that's in an exponent. For example, suppose we expression of the form $a^{b} = c$.	•					
	If <i>b</i> is a constant, we can solve for either <i>a</i> or <i>c</i> , as in the expression	ons:					
	$a^3 = 21$ ($\sqrt[3]{a^3} = \sqrt[3]{21} = 2.76$)						
	$6^2 = c$ ($6^2 = 36$)						
	However, we can't do this if a and c are constants and we need to the expression:	o solve for <i>b</i> , as in					
	3 ^{<i>b</i>} = 17						
	To solve for <i>b</i> , we need to get <i>b</i> out of the exponent. We do this b logarithm of both sides:	by taking the					
	<i>b</i> log(3) = log(17)						
	$b = \frac{\log(17)}{\log(3)} = \frac{1.23}{0.477} = 2.58$						
	It doesn't matter which base you use. For example, using In instead same result:	ad of log gives the					
	<i>b</i> ln(3)=ln(17)						
	$b = \frac{\ln(17)}{\ln(3)} = \frac{2.83}{1.10} = 2.58$						
	We can apply this same logic to the half-life equation:						
	$\frac{A}{A_o} = \left(\frac{1}{2}\right)^{t_{\tau}}$						
	$\log A - \log A_o = \frac{t}{\tau} \log\left(\frac{1}{2}\right)$						

Use this space for summary and/or additional notes:

	Half-Life	Page: 597
Big Ideas	Details	Unit: Atomic and Nuclear Physics
	Sample problem:	
	Q: If you started with 64 g of ¹³¹ I, how long wo	
	remaining? The half-life (τ) of ¹³¹ I is 8.07 da	ays.
	64	
	A: We have 5.75 g remaining. However, $\frac{64}{5.75}$ =	11.13 , which is not a power of two.
	This means we don't have an integer numbe logarithms:	er of half-lives, so we need to use
	$\frac{A}{A_o} = \left(\frac{1}{2}\right)^{t/\tau}$	
	$\log A - \log A_o = \frac{t}{\tau}$	$\log\left(\frac{1}{2}\right)$
	$\log 5.75 - \log 64 = \frac{t}{8.0}$	
	$0.7597 - 1.8062 = \frac{t}{8.01}$	_(-0.3010)
	-1.0465 = -0.03	
	28.1 days =	
	Homework Pre	oblems
	For these problems, you will need to use half-lif Selected Radioisotopes on page 624 of your phy	
	 (M) If a lab had 128 g of ³H waste 49 ye today? (<i>Note: you may round off to a v</i> 	-
	Angulari 8 g	
	Answer: 8g	
	Lise this space for summany and/or additional n	atos

Half-Life

Use this space for summary and/or additional notes:

Big Ideas D	Petails	Unit: Atomic and Nuclear Physics
	2.	(S) Suppose you set aside a 20. g sample of ⁴² K at 5:00pm on a Friday for an experiment, but you are not able to perform the experiment until 9:00am on Monday (64 hours later). How much of the ⁴² K will be left?
	3.	Answer: 0.56 g (M) If a school wants to dispose of small amounts of radioactive waste, they
		can store the materials for ten half-lives, and then dispose of the materials as regular trash.
		a. If we had a sample of ³² P, how long would we need to store it before disposing of it?
		Answer: 143 days b. If we had started with 64 g of ³² P, how much ³² P would be left after
		ten half-lives? Approximately what fraction of the original amount would be left?
		Answer: 0.063 g; approximately $\frac{1}{1000}$ of the original amount.
	4.	(M) If the carbon in a sample of human bone contained 30. % of the expected amount of 14 C, approximately how old is the sample?
		Answer: 9 950 years

Use this space for summary and/or additional notes: