Appendix: AP® Physics 2 Equation Tables Advanced placement physics 2, EFFECTIVE 2017

CONSTANTS AND CONVERSION FACTORS						
Proton mass,	$m_p = 1.67 \times 10^{-27} \text{ kg}$	Electron charge magnitude,	$e = 1.60 \times 10^{-19} \text{ C}$			
Neutron mass,	$m_n = 1.67 \times 10^{-27} \text{ kg}$	1 electron volt,	$1 eV {=} 1.60 {\times} 10^{-19} J$			
Electron mass,	$m_e = 9.11 \times 10^{-31} \text{ kg}$	Speed of light,	$c = 3.00 \times 10^8 \text{ m/s}$			
Avogadro's number,	$N_o = 6.02 \times 10^{23} \text{ mol}^{-1}$	Universal gravitational constant,	$G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$			
Universal gas constant,	$R = 8.31 \frac{J}{\text{mol-K}}$	Acceleration due to gravity at Earth's surface,	$g = 9.8 \mathrm{m/s^2}$			
Boltzmann's constant,	$k_{B} = 1.38 \times 10^{-23} \frac{J}{K}$					
1 ur	nified atomic mass unit,	$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \frac{\text{MeV}}{\text{c}^2}$				
	Planck's constant,	$h = 6.63 \times 10^{-34} \text{J} \cdot \text{s} = 4.14 \times 10^{-15} \text{eV} \cdot \text{s}$				
		$hc = 1.99 \times 10^{-25} \text{ J} \cdot \text{m} = 1.24 \times 10^{-3} \text{ eV} \cdot \text{nm}$				
	Vacuum permittivity,	$\mathcal{E}_o = 8.85 \times 10^{-12} \frac{C^2}{N \cdot m^2}$				
С	oulomb's law constant,	$k = \frac{1}{4\pi\varepsilon_o} = 9.0 \times 10^9 \frac{\mathrm{N} \cdot \mathrm{m}^2}{\mathrm{c}^2}$				
	Vacuum permeability,	$\mu_o = 4\pi imes 10^{-7} rac{ ext{T} \cdot ext{m}}{ ext{A}}$				
	Magnetic constant,	$k' = \frac{\mu_o}{4\pi} = 1 \times 10^{-7} \frac{\text{T} \cdot \text{m}}{\text{A}}$				
	1 atmosphere pressure,	$1 \text{ atm} = 1.0 \times 10^5 \frac{N}{m^2} = 1.0 \times 10^5$	Pa			

	meter,	m	mole	mol	watt,	W	farad,	F
	kilogram,	k	hertz,	Hz	coulomb,	С	tesla,	Т
UNIT SYMBOLS	second,	s	newton,	N	volt,	V	degree Celsius,	°C
SINDOLS	ampere,	А	pascal,	Pa	ohm,	Ω	electron volt,	eV
	kelvin,	Κ	joule,	J	henry,	Н		

Р			
Factor	Prefix	Symbo l	θ
1012	tera	Т	sin
10 ⁹	giga	G	cos
106	mega	М	tan
10 ³	kilo	k	
10 ⁻²	centi	с	The
10 ⁻³	milli	m	
10-6	micro	μ	
10 ⁻⁹	nano	n	
10 ⁻¹²	pico	р	

	VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES						
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2} / 2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2} / 2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8

The following conventions are used in this exam.

- I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. In all situations, positive work is defined as work done <u>on</u> a system.
- III. The direction of current is conventional current: the direction in which positive charge would drift.
- IV. Assume all batteries and meters are ideal unless otherwise stated.
- V. Assume edge effects for the electric field of a parallel plate capacitor unless otherwise stated.
- VI. For any isolated electrically charged object, the electric potential is defined as zero at infinite distance from the charged object.

MECH	ANICS	ELECTRICITY AND MAGNETISM			
$v_x = v_{xo} + a_x t$	a = acceleration A = amplitude	$\left \vec{F}_{E}\right = \frac{1}{4\pi\varepsilon_{o}} \frac{\left q_{1}q_{2}\right }{r^{2}}$	A = area B = magnetic field		
$x = x_o + v_{xo}t + \frac{1}{2}a_xt^2$	d = distance E = energy f = frequency	$\vec{E} = rac{\vec{F}_E}{q}$	C = capacitance d = distance		
$v_x^2 = v_{xo}^2 + 2a_x(x - x_o)$	F = force I = rotational inertia	$\left \vec{E}\right = \frac{1}{4\pi\varepsilon_o} \frac{ q }{r^2}$	$E = \text{electric field}$ $\mathcal{E} = \text{emf}$ $F = \text{force}$		
$\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$	K = kinetic energy k = spring constant	$\Delta U_E = q \Delta V$	I = current $\ell = \text{length}$		
$\left \vec{F}_{f}\right \leq \mu \left \vec{F}_{n}\right $	L = angular momentum $\ell =$ length	$V = \frac{1}{4\pi\varepsilon_o} \frac{q}{r}$	P = power Q = charge		
$a_c = \frac{v^2}{r}$	m = mass P = power p = momentum	$\left \vec{E}\right = \left \frac{\Delta V}{\Delta r}\right $	q = point charge R = resistance r = separation		
$\vec{p} = m\vec{v}$	r = radius or separation T = period	$\Delta V = \frac{Q}{C}$	t = time U = potential (stored)		
$\Delta \vec{p} = \vec{F} \Delta t$	t = time U = potential energy	$C = \kappa \varepsilon_o \frac{A}{d}$	energy V = electric potential		
$K = \frac{1}{2}mv^2$	V = volume v = speed	$E = \frac{Q}{\varepsilon_o A}$	v = speed $\kappa =$ dielectric constant		
$\Delta E = W = F_{\parallel}d = Fd\cos\theta$	W = work done on a system x = position y = height	$U_{C} = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^{2}$ $L = \frac{\Delta Q}{2}$	$\theta = angle$		
$P = \frac{\Delta E}{\Delta t}$	α = angular acceleration	$I = \frac{\Delta Q}{\Delta t}$	$\Phi = \mathrm{flux}$		
$\theta = \theta_o + \omega_o t + \frac{1}{2}\alpha t^2$	$\mu = \text{coefficient of friction}$ $\theta = \text{angle}$	$R = \frac{\rho\ell}{A}$	$\vec{F}_{M} = q\vec{v} \times \vec{B}$		
$\omega = \omega_o + \alpha t$	$ \rho = \text{density} $ $ \tau = \text{torque} $	$P = I\Delta V$	$\left \vec{F}_{M} \right = \left q \vec{v} \right \sin \theta \left\ \vec{B} \right $		
$x = A\cos(\omega t) = A\cos(2\pi ft)$	ω = angular speed	$I = \frac{\Delta V}{R}$	$\vec{F}_{M} = \vec{I} \ell \times \vec{B}$		
$x_{cm} = \frac{\sum m_i x_i}{\sum m_i}$	$\Delta U_g = mg\Delta y$	$R_s = \sum_i R_i$	$\left \vec{F}_{M} \right = \left \vec{I} \ell \right \sin \theta \left \vec{B} \right $		
	$T = \frac{2\pi}{\omega} = \frac{1}{f}$	$\frac{1}{R_p} = \sum_i \frac{1}{R_i}$	$\Phi_{B} = \vec{B} \bullet \vec{A}$		
$\tau = r_{\perp}F = rF\sin\theta$	$T_s = 2\pi \sqrt{\frac{m}{k}}$	$C_p = \sum_i C_i$	$\Phi_{B} = \left \vec{B} \right \cos \theta \left \vec{A} \right $		
$L = I\omega$	$T_p = 2\pi \sqrt{rac{\ell}{g}}$	$\frac{1}{C_s} = \sum_i \frac{1}{C_i}$	$\mathcal{E} = -\frac{\Delta \Phi_B}{\Delta t}$		
$\Delta L = \tau \Delta t$	$1 \rightarrow 1$ $m_1 m_2$	μI			
$K = \frac{1}{2}I\omega^2$	$\left \vec{F}_{g}\right = G \frac{m_{1}m_{2}}{r^{2}}$	$B = \frac{\mu_o}{2\pi} \frac{I}{R}$	$\mathcal{E} = B\ell v$		
$\left \vec{F}_{s}\right = k \left \vec{x}\right $	$\vec{g} = \frac{\vec{F}_g}{m}$				
$U_s = \frac{1}{2}kx^2$	$U_g = G \frac{m_1 m_2}{r}$				

FLUID MECHANICS A	ND THERMAL PHYSICS	WAVES AND OPTICS			
$\rho = \frac{m}{V}$ $P = \frac{F}{A}$ $P = P_o + \rho g h$ $F_b = \rho V g$ $A_1 v_1 = A_2 v_2$ $P_1 + \rho g v_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g v_2 + \frac{1}{2} \rho v_2$ $\frac{Q}{\Delta t} = \frac{kA \Delta T}{L}$	A = area F = force h = depth k = thermal conductivity K = kinetic energy L = thickness m = mass n = number of moles N = number of molecules P = pressure Q = energy transferred to a system by heating T = temperature t = time	$\lambda = \frac{v}{f}$ $n = \frac{c}{v}$ $n_{1} \sin \theta_{1} = n_{2} \sin \theta_{2}$ $\frac{1}{s_{i}} + \frac{1}{s_{o}} = \frac{1}{f}$ $ M = \left \frac{h_{i}}{h_{o}}\right = \left \frac{s_{i}}{s_{o}}\right $ $\Delta L = m\lambda$ $d \sin \theta = m\lambda$	d = separation f = frequency or focal length h = height L = distance M = magnification m = an integer n = index of refraction s = distance v = speed $\lambda = \text{wavelength}$ $\theta = \text{angle}$		
$\Delta t \qquad L$ $PV = nRT = Nk_BT$ $K = \frac{3}{2}k_BT$ $W = -P\Delta V$	U = internal energy V = volume v = speed W = work done on a system	GEOMETRY AN Rectangle A = bh	ND TRIGONOMETRY A = area C = circumference		
$\Delta U = Q + W$	y = height $\rho = \text{density}$	Triangle $A = bh$	V = volume S = surface area b = base h = height $\ell = \text{length}$		
MODER	N PHYSICS	Circle $A = \frac{1}{2}bh$	w = width r = radius		
$E = hf$ $K_{\text{max}} = hf - \phi$	E = energy f = frequency K = kinetic energy m = mass	Rectangular solid $V = \ell w h$	Right triangle $c^2 = a^2 + b^2$ $\sin \theta = \frac{a}{c}$		
$\lambda = \frac{h}{p}$ $E = mc^{2}$	$m = mass$ $p = momentum$ $\lambda = wavelength$ $\phi = work function$	Cylinder $V = \pi r^2 \ell$ $S = 2\pi r \ell + 2\pi r^2$	$\cos \theta = \frac{b}{c}$ $\tan \theta = \frac{a}{b}$		
		Sphere $V = \frac{4}{3}\pi r^3$ $S = 4\pi r^2$	e^{c} a b a		