Page: 605

Appendix: AP® Physics 2 Equation Tables

ADVANCED PLACEMENT PHYSICS PHYSICS 2 IN PLAIN ENGLISH, EFFECTIVE 2017

CONSTANTS AND CONVERSION FACTORS						
Proton mass,	$m_{p} = 1.67 \times 10^{-27} \text{ kg}$	Electron charge magnitude,	$e = 1.60 \times 10^{-19} \text{ C}$			
Neutron mass,	$m_n = 1.67 \times 10^{-27} \text{ kg}$	1 electron volt,	$1\text{eV} = 1.60 \times 10^{-19}\text{J}$			
Electron mass,	$m_e = 9.11 \times 10^{-31} \text{ kg}$	Speed of light,	$c = 3.00 \times 10^8 \text{ m/s}$			
Avogadro's number,	$N_o = 6.02 \times 10^{23} \text{ mol}^{-1}$	Universal gravitational constant,	$G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$			
Universal gas constant,	$R = 8.31 \frac{J}{\text{mol-K}}$	Acceleration due to gravity at Earth's surface,	$g = 9.8 \mathrm{m/s^2}$			
Boltzmann's constant,	$k_{\rm B} = 1.38 \times 10^{-23} \frac{\rm J}{\rm K}$					
1 ur	nified atomic mass unit,	$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \frac{\text{MeV}}{\text{c}^2}$				
	Planck's constant,	$h = 6.63 \times 10^{-34} \text{J} \cdot \text{s} = 4.14 \times 10^{-34} \text{J} \cdot \text{s}$	$0^{-15} \text{eV} \cdot \text{s}$			
		$hc = 1.99 \times 10^{-25} \text{J} \cdot \text{m} = 1.24 \times 10^{-3} \text{eV} \cdot \text{nm}$				
	Vacuum permittivity,	$\varepsilon_o = 8.85 \times 10^{-12} \frac{\text{C}^2}{\text{N} \cdot \text{m}^2}$				
C	coulomb's law constant,	$k = \frac{1}{4\pi\varepsilon_o} = 9.0 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$				

	meter,	m	mole	mol	watt,	W	farad,	F
	kilogram,	k	hertz,	Hz	coulomb,	С	tesla,	T
UNIT SYMBOLS	second,	s	newton,	N	volt,	V	degree Celsius,	°C
SINIBOLS	ampere,	A	pascal,	Pa	ohm,	Ω	electron volt,	eV
	kelvin	K	ioule	ī	henry	Н		

 $\mu_o = 4\pi \times 10^{-7} \, \frac{\text{T} \cdot \text{m}}{\text{A}}$

 $k' = \frac{\mu_o}{4\pi} = 1 \times 10^{-7} \frac{\text{T} \cdot \text{m}}{\text{A}}$

 $1 \text{ atm} = 1.0 \times 10^5 \frac{N}{m^2} = 1.0 \times 10^5 \text{ Pa}$

Vacuum permeability,

1 atmosphere pressure,

Magnetic constant,

PREFIXES					
Factor	Prefix	Symbo 1			
1012	tera	T			
10 ⁹	giga	G			
10^{6}	mega	M			
10^{3}	kilo	k			
10^{-2}	centi	c			
10^{-3}	milli	m			
10^{-6}	micro	μ			
10^{-9}	nano	n			
10^{-12}	pico	p			

	VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES						
θ 0° 30° 37° 45° 53° 60° 90°							
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8

The following conventions are used in this exam.

- I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. In all situations, positive work is defined as work done <u>on</u> a system.
- III. The direction of current is conventional current: the direction in which positive charge would drift.
- IV. Assume all batteries and meters are ideal unless otherwise stated.
- V. Assume edge effects for the electric field of a parallel plate capacitor unless otherwise stated.
- VI. For any isolated electrically charged object, the electric potential is defined as zero at infinite distance from the charged object.

MECHANICS

$v_{x} = v_{xo} + a_{x}t$	a = acceleration
x x0 x	A = amplitude

$$d = \text{distance}$$

$$E = \text{energy}$$

$$f = \text{frequency}$$

$$v_x^2 = v_{xo}^2 + 2a_x(x - x_o)$$

$$F = \text{force}$$

$$I = \text{rotational inertia}$$

$$\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$$

$$K = \text{kinetic energy}$$

$$k = \text{spring constant}$$

m m
$$k = \text{spring constant}$$

$$\left| \vec{F}_f \right| \le \mu \left| \vec{F}_n \right|$$

$$\ell = \text{length}$$

$$\ell = \text{length}$$

$$m = \text{mass}$$

$$a_c = \frac{v^2}{r}$$
 $P = \text{power}$ $p = \text{momentum}$

$$\vec{p} = m\vec{v}$$
 $r = \text{radius or separation}$

$$T = period$$

$$\Delta \vec{p} = \vec{F} \Delta t$$
 $t = \text{time}$ $U = \text{potential energy}$

$$K = \frac{1}{2}mv^2$$
 $V = \text{volume}$ $v = \text{speed}$

$$\Delta E = W = F_{\parallel} d = F d \cos \theta$$
 $W = \text{work done on a system}$

$$x = position$$

$$P = \frac{\Delta E}{\Delta t}$$
 y = height

$$\alpha$$
 = angular acceleration

$$\theta = \theta_o + \omega_o t + \frac{1}{2}\alpha t^2$$
 $\mu = \text{coefficient of friction}$

$$\theta = \text{angle}$$

$$\omega = \omega_o + \alpha t$$
 $\rho = \text{density}$ $\tau = \text{torque}$

$$\tau$$
 = torque

$$x = A\cos(\omega t) = A\cos(2\pi ft)$$
 $\omega = \text{angular speed}$

$$x_{cm} = \frac{\sum m_i x_i}{\sum m_i} \qquad \Delta U_g = mg \Delta y$$

$$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I} \qquad T = \frac{2\pi}{\omega} = \frac{1}{f}$$

$$\tau = r_{\perp}F = rF\sin\theta \qquad T_s = 2\pi\sqrt{\frac{m}{k}}$$

$$L = I\omega$$

$$T_p = 2\pi \sqrt{\frac{\ell}{\sigma}}$$

$$\Delta L = \tau \Delta t$$

$$\left| \vec{F}_{g} \right| = G \frac{m_{1} m_{2}}{r^{2}}$$

$$K = \frac{1}{2}I\omega^2$$

$$|\vec{F}_s| = k |\vec{x}|$$
 $|\vec{g}| = \frac{|\vec{F}|}{n}$

$$U_s = \frac{1}{2}kx^2 \qquad \qquad U_g = G\frac{m_1 m_2}{r}$$

ELECTRICITY AND MAGNETISM

$$\left| \vec{F}_{E} \right| = \frac{1}{4\pi\varepsilon_{o}} \frac{\left| q_{1}q_{2} \right|}{r^{2}}$$
 $A = \text{area}$

$$\vec{E} = \frac{\vec{F}_E}{q}$$
 $B = \text{magnetic field}$ $C = \text{capacitance}$ $d = \text{distance}$

$$|\vec{E}| = \frac{1}{4 - 1} \frac{|q|}{r^2}$$
 $E = \text{electric field}$ $\mathcal{E} = \text{emf}$

$$F = \text{force}$$

$$V = \frac{1}{4\pi\varepsilon_o} \frac{q}{r}$$
 $P = \text{power}$ $Q = \text{charge}$

$$\left| \vec{E} \right| = \left| \frac{\Delta V}{\Delta r} \right|$$
 $q = \text{point charge}$ $R = \text{resistance}$ $r = \text{separation}$

$$\Delta V = \frac{Q}{C} \qquad t = \text{time}$$

$$U =$$
potential (stored)

$$C = \kappa \varepsilon_o \frac{A}{d}$$
 energy $V = \text{electric potential}$

$$E = \frac{Q}{\varepsilon_o A}$$
 $v = \text{speed}$
$$\kappa = \text{dielectric constant}$$

$$U_C = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^2 \ \rho = \text{resistivity}$$

 $\theta = \text{angle}$

$$I = \frac{\Delta Q}{\Delta t}$$
 $\Phi = \text{flux}$

$$R = \frac{\rho \ell}{A} \qquad \qquad \vec{F}_{M} = q\vec{v} \times \vec{B}$$

$$P = I\Delta V \qquad |\vec{F}_{M}| = |q\vec{v}| |\sin\theta| |\vec{B}|$$

$$I = \frac{\Delta V}{R} \qquad \qquad \vec{F}_{M} = \vec{I} \, \ell \times \vec{B}$$

$$R_s = \sum_i R_i \qquad |\vec{F}_M| = |\vec{I}\ell| |\sin \theta| |\vec{B}|$$

$$\frac{1}{R_n} = \sum_{i} \frac{1}{R_i} \qquad \Phi_B = \vec{B} \bullet \vec{A}$$

$$C_p = \sum_{i} C_i \qquad \Phi_B = \left| \vec{B} \right| \cos \theta \left| \vec{A} \right|$$

$$\frac{1}{C_s} = \sum_{i} \frac{1}{C_i} \qquad \qquad \mathcal{E} = -\frac{\Delta \Phi_B}{\Delta t}$$

$$B = \frac{\mu_o}{2\pi} \frac{I}{R} \qquad \qquad \mathcal{E} = B\ell v$$

FLUID MECHANICS AND THERMAL PHYSICS

$\rho = \frac{m}{V}$	
V	A = area
$_{D}$ F	F = force
$P = \frac{1}{A}$	h = depth

$$P = P_o + \rho g h$$
 $k = \text{thermal conductivity}$ $K = \text{kinetic energy}$

$$F_b = \rho V g$$
 $L = \text{thickness}$ $m = \text{mass}$

$$A_1v_1 = A_2v_2$$
 $n =$ number of moles $N =$ number of molecules

$$\begin{array}{c} P = \text{pressure} \\ P_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = \\ P_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2 \end{array} \quad \begin{array}{c} P = \text{pressure} \\ Q = \text{energy transferred to a} \\ \text{system by heating} \end{array}$$

$$\frac{Q}{\Delta t} = \frac{kA \Delta T}{L}$$

$$T = \text{temperature}$$

$$t = \text{time}$$

$$PV = nRT = Nk_BT$$
 $U = internal energy$

$$V = \text{volume}$$

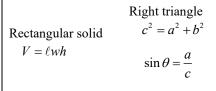
$$K = \frac{3}{2}k_BT \qquad v = \text{speed}$$

$$W = -P\Delta V$$
 $W = \text{work done on a system}$

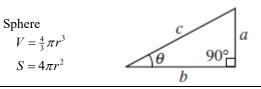
$$y = \text{height}$$

$$\rho = \text{density}$$

MODERN PHYSICS


$$E = hf$$
 $E = \text{energy}$ $f = \text{frequency}$ $K = \text{kinetic energy}$ $f = \text{mass}$ $f = \text{momentum}$ $f = \text{momentum}$

WAVES AND OPTICS


$\lambda = \frac{v}{f}$	d = separation
J	f = frequency or
$n = \frac{c}{v}$	focal length
ν	h = height
$n_1 \sin \theta_1 = n_2 \sin \theta_2$	L = distance
1 1 1	M = magnification
$\frac{1}{s_i} + \frac{1}{s_o} = \frac{1}{f}$	m = an integer
	n = index of refraction
$ M = \left \frac{h_i}{h_1} \right = \left \frac{s_i}{s_2} \right $	s = distance
$ h_o $ $ s_o $	v = speed
$\Delta L = m\lambda$	λ = wavelength
	θ = angle
$d\sin\theta = m\lambda$	

GEOMETRY AND TRIGONOMETRY

Rectangle	A = area
rectangle	
A = bh	C = circumference
	V = volume
Triangle	S = surface area
A = bh	b = base
	h = height
Circle	$\ell = length$
$A = \frac{1}{2}bh$	w = width
2 011	r = radius

Cylinder	$\cos \theta = \frac{b}{a}$
$V = \pi r^2 \ell$	C
$S = 2\pi r \ell + 2\pi r^2$	a

